Quantum Probability and Spectral Analysis of Graphs

Quantum Probability and Spectral Analysis of Graphs

Author: Akihito Hora

Publisher: Springer Science & Business Media

Published: 2007-07-05

Total Pages: 384

ISBN-13: 3540488634

DOWNLOAD EBOOK

This is the first book to comprehensively cover quantum probabilistic approaches to spectral analysis of graphs, an approach developed by the authors. The book functions as a concise introduction to quantum probability from an algebraic aspect. Here readers will learn several powerful methods and techniques of wide applicability, recently developed under the name of quantum probability. The exercises at the end of each chapter help to deepen understanding.


Spectral Analysis of Growing Graphs

Spectral Analysis of Growing Graphs

Author: Nobuaki Obata

Publisher: Springer

Published: 2017-02-17

Total Pages: 141

ISBN-13: 9811035067

DOWNLOAD EBOOK

This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their limit distributions for growing graphs. The main vehicle is quantum probability, an algebraic extension of the traditional probability theory, which provides a new framework for the analysis of adjacency matrices revealing their non-commutative nature. For example, the method of quantum decomposition makes it possible to study spectral distributions by means of interacting Fock spaces or equivalently by orthogonal polynomials. Various concepts of independence in quantum probability and corresponding central limit theorems are used for the asymptotic study of spectral distributions for product graphs.This book is written for researchers, teachers, and students interested in graph spectra, their (asymptotic) spectral distributions, and various ideas and methods on the basis of quantum probability. It is also useful for a quick introduction to quantum probability and for an analytic basis of orthogonal polynomials.


Spectral Graph Theory

Spectral Graph Theory

Author: Fan R. K. Chung

Publisher: American Mathematical Soc.

Published: 1997

Total Pages: 228

ISBN-13: 0821803158

DOWNLOAD EBOOK

This text discusses spectral graph theory.


Infinite Dimensional Analysis, Quantum Probability And Related Topics, Qp38 - Proceedings Of The International Conference

Infinite Dimensional Analysis, Quantum Probability And Related Topics, Qp38 - Proceedings Of The International Conference

Author: Noboru Watanabe

Publisher: World Scientific

Published: 2023-10-25

Total Pages: 306

ISBN-13: 9811276005

DOWNLOAD EBOOK

This volume aims to return to the starting point of the fields of infinite dimensional analysis and quantum probability, fields that are growing rapidly at present, and to seriously attempt mutual interaction between the two, with a view to enumerating and solving the many fundamental problems they entail. For such a purpose, we look for interdisciplinary bridges in mathematics including classical probability and to different branches of physics, in particular, research for new paradigms for information science on the basis of quantum theory.


Groups and Graphs, Designs and Dynamics

Groups and Graphs, Designs and Dynamics

Author: R. A. Bailey

Publisher: Cambridge University Press

Published: 2024-05-30

Total Pages: 452

ISBN-13: 1009465945

DOWNLOAD EBOOK

This collection of four short courses looks at group representations, graph spectra, statistical optimality, and symbolic dynamics, highlighting their common roots in linear algebra. It leads students from the very beginnings in linear algebra to high-level applications: representations of finite groups, leading to probability models and harmonic analysis; eigenvalues of growing graphs from quantum probability techniques; statistical optimality of designs from Laplacian eigenvalues of graphs; and symbolic dynamics, applying matrix stability and K-theory. An invaluable resource for researchers and beginning Ph.D. students, this book includes copious exercises, notes, and references.


Selected Papers on Analysis and Related Topics

Selected Papers on Analysis and Related Topics

Author:

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 190

ISBN-13: 9780821839287

DOWNLOAD EBOOK

This volume contains translations of papers that originally appeared in the Japanese journal 'Sugaku'. The papers range over a variety of topics, including operator algebras, analysis, and statistics.


Probability on Graphs

Probability on Graphs

Author: Geoffrey Grimmett

Publisher: Cambridge University Press

Published: 2018-01-25

Total Pages: 279

ISBN-13: 1108542999

DOWNLOAD EBOOK

This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.


Reality and Measurement in Algebraic Quantum Theory

Reality and Measurement in Algebraic Quantum Theory

Author: Masanao Ozawa

Publisher: Springer

Published: 2018-11-02

Total Pages: 398

ISBN-13: 9811324875

DOWNLOAD EBOOK

This volume contains papers based on presentations at the “Nagoya Winter Workshop 2015: Reality and Measurement in Algebraic Quantum Theory (NWW 2015)”, held in Nagoya, Japan, in March 2015. The foundations of quantum theory have been a source of mysteries, puzzles, and confusions, and have encouraged innovations in mathematical languages to describe, analyze, and delineate this wonderland. Both ontological and epistemological questions about quantum reality and measurement have been placed in the center of the mysteries explored originally by Bohr, Heisenberg, Einstein, and Schrödinger. This volume describes how those traditional problems are nowadays explored from the most advanced perspectives. It includes new research results in quantum information theory, quantum measurement theory, information thermodynamics, operator algebraic and category theoretical foundations of quantum theory, and the interplay between experimental and theoretical investigations on the uncertainty principle. This book is suitable for a broad audience of mathematicians, theoretical and experimental physicists, and philosophers of science.