Quantum Network with Multiple Cold Atomic Ensembles

Quantum Network with Multiple Cold Atomic Ensembles

Author: Bo Jing

Publisher: Springer Nature

Published: 2022-03-16

Total Pages: 197

ISBN-13: 981190328X

DOWNLOAD EBOOK

This book highlights the novel research in quantum memory networking, especially quantum memories based on cold atomic ensembles. After discussing the frontiers of quantum networking research and building a DLCZ-type quantum memory with cold atomic ensemble, the author develops the ring cavity enhanced quantum memory and demonstrates a filter-free quantum memory, which significantly improves the photon-atom entanglement. The author then realizes for the first time the GHZ-type entanglement of three separate quantum memories, a building block of 2D quantum repeaters and quantum networks. The author also combines quantum memories and time-resolved measurements, and reports the first multiple interference of three single photons with different colors. The book is of good reference value for graduate students, researchers, and technical personnel in quantum information sciences.


Quantum Networking with Atomic Ensembles

Quantum Networking with Atomic Ensembles

Author: Dzmitry Matsukevich

Publisher:

Published: 2006

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Quantum communication networks enable secure transmission of information between remote sites. However, at present, photon losses in the optical fiber limit communication distances to less than 150 kilometers. The quantum repeater idea allows extension of these distances. In practice, it involves the ability to store quantum information for a long time in atomic systems and coherently transfer quantum states between matter and light. Previously known schemes involved atomic Raman transitions in the UV or near-infrared and suffered from severe loss in optical fiber that precluded long-distance quantum communication. In this thesis a practical quantum telecommunication scheme based on cascade atomic transitions is proposed, with particular reference to cold alkali metal ensembles. Within this proposal, essential building blocks for a quantum network architecture are demonstrated experimentally, including storage and retrieval of single photons transmitted between remote quantum memories, collapses and revivals of quantum memories, deterministic generation of single photons via conditional quantum evolution, quantum state transfer between atomic and photonic qubits, entanglement of atomic and photonic qubits, entanglement of remote atomic qubits, and entanglement of a pair of 1530 nm and 780 nm photons. These results pave the way for construction of a realistic quantum repeater for long distance quantum communication.


Polarization Entanglement Storage in Ensemble-based Atomic Memories

Polarization Entanglement Storage in Ensemble-based Atomic Memories

Author: Bhaskar Mookerji

Publisher:

Published: 2011

Total Pages: 85

ISBN-13:

DOWNLOAD EBOOK

Quantum networks enable the long-distance communication of quantum states through teleportation, but require, in advance, the robust distribution of entanglement between relevant parties. Engineering these networks requires quantum interconnects, which convert quantum states in one physical system to those of another reversibly, and with high fidelity. In this thesis, we describe implementations of long-distance quantum communication networks using polarization entanglement and atomic ensembles. We concisely describe the interactions of a quantum optical field with a heralding atomic ensemble, accounting for multiple-pair events at entanglement generation, as well as finite transmission and photodetection efficiencies under number-resolving and non-resolving photodetection schemes. Using these results, we perform a detailed quantitative performance analysis of quantum networks that distribute and swap entanglement.


Quantum Information with Continuous Variables of Atoms and Light

Quantum Information with Continuous Variables of Atoms and Light

Author: N. J. Cerf

Publisher: World Scientific

Published: 2007

Total Pages: 629

ISBN-13: 1860948162

DOWNLOAD EBOOK

Quantum information describes the new field which bridges quantum physics and information science. The quantum world allows for completely new architectures and protocols. While originally formulated in continuous quantum variables, the field worked almost exclusively with discrete variables, such as single photons and photon pairs. The renaissance of continuous variables came with European research consortia such as ACQUIRE (Advanced Coherent Quantum Information Research) in the late 1990s, and QUICOV (Quantum Information with Continuous Variables) from 2000OCo2003. The encouraging research results of QUICOV and the new conference series CVQIP (Continuous Variable Quantum Information Processing) triggered the idea for this book. This book presents the state of the art of quantum information with continuous quantum variables. The individual chapters discuss results achieved in QUICOV and presented at the first five CVQIP conferences from 2002OCo2006. Many world-leading scientists working on continuous variables outside Europe also contribute to the book.


Single-Photon Generation and Detection

Single-Photon Generation and Detection

Author: Bo Zhao

Publisher: Elsevier Inc. Chapters

Published: 2013-11-29

Total Pages: 34

ISBN-13: 0128058137

DOWNLOAD EBOOK

We introduce the atomic-ensemble-based single-photon source. Thanks to the collective enhancement, It has the following advantages: it does not require strong coupling between light and matter, thanks to the collective enhancement; the generated narrow band single photons are storable, narrow-band, and highly controllable; and the single photons emitted from independent sources are pure and indistinguishable. In conjunction with a feedback circuit, the atomic-ensemble single-photon source can work in a deterministic way, where the production rate is significantly enhanced while low and good indistinguishability are preserved. The atomic-ensemble-based single-photon sources provide an essential tool for scalable quantum networks and linear-optical quantum computation.


Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles

Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles

Author: Dong-Sheng Ding

Publisher: Springer

Published: 2017-12-26

Total Pages: 136

ISBN-13: 9811074763

DOWNLOAD EBOOK

This thesis presents an experimental study of quantum memory based on cold atomic ensembles and discusses photonic entanglement. It mainly focuses on experimental research on storing orbital angular momentum, and introduces readers to methods for storing a single photon carried by an image or an entanglement of spatial modes. The thesis also discusses the storage of photonic entanglement using the Raman scheme as a step toward implementing high-bandwidth quantum memory. The storage of photonic entanglement is central to achieving long-distance quantum communication based on quantum repeaters and scalable linear optical quantum computation. Addressing this key issue, the findings presented in the thesis are very promising with regard to future high-speed and high-capacity quantum communications.


Long Distance Entanglement Between Quantum Memories

Long Distance Entanglement Between Quantum Memories

Author: Yong Yu

Publisher: Springer Nature

Published: 2023-01-01

Total Pages: 147

ISBN-13: 9811979391

DOWNLOAD EBOOK

This book highlights novel research work done on cold atom-based quantum networks. Given that one of the main challenges in building the quantum network is the limited entanglement distribution distance, this book presents some state-of-the-art experiments in tackling this challenge and, for the first time, establishes entanglement between quantum memories via metropolitan-scale fiber transmission. This achievement is accomplished by cooperating high-efficiency cold quantum memories, low-loss quantum frequency conversion modules, and long-fiber phase-locking techniques. In the book, the scheme design, experimental setup, data analyses, and numerous technical details are given. Therefore, it suits a broad readership that includes all students, researchers, and technicians who work in quantum information sciences.