Quantum Microscopy of Biological Systems

Quantum Microscopy of Biological Systems

Author: Michael Taylor

Publisher: Springer

Published: 2015-05-26

Total Pages: 204

ISBN-13: 3319189387

DOWNLOAD EBOOK

This thesis reports on the development of the first quantum enhanced microscope and on its applications in biological microscopy. The first quantum particle-tracking microscope, described in detail here, represents a pioneering advance in quantum microscopy, which is shown to be a powerful and relevant technique for future applications in science and medicine. The microscope is used to perform the first quantum-enhanced biological measurements -- a central and long-standing goal in the field of quantum measurement. Sub diffraction-limited quantum imaging is achieved, also for the first time, with a scanning probe imaging configuration allowing 10-nanometer resolution.


Quantum Effects in Biology

Quantum Effects in Biology

Author: Masoud Mohseni

Publisher: Cambridge University Press

Published: 2014-08-07

Total Pages: 421

ISBN-13: 1107010802

DOWNLOAD EBOOK

Explores the role of quantum mechanics in biology for advanced undergraduate and graduate students in physics, biology and chemistry.


Optics in Our Time

Optics in Our Time

Author: Mohammad D. Al-Amri

Publisher: Springer

Published: 2016-12-12

Total Pages: 509

ISBN-13: 3319319035

DOWNLOAD EBOOK

Light and light based technologies have played an important role in transforming our lives via scientific contributions spanned over thousands of years. In this book we present a vast collection of articles on various aspects of light and its applications in the contemporary world at a popular or semi-popular level. These articles are written by the world authorities in their respective fields. This is therefore a rare volume where the world experts have come together to present the developments in this most important field of science in an almost pedagogical manner. This volume covers five aspects related to light. The first presents two articles, one on the history of the nature of light, and the other on the scientific achievements of Ibn-Haitham (Alhazen), who is broadly considered the father of modern optics. These are then followed by an article on ultrafast phenomena and the invisible world. The third part includes papers on specific sources of light, the discoveries of which have revolutionized optical technologies in our lifetime. They discuss the nature and the characteristics of lasers, Solid-state lighting based on the Light Emitting Diode (LED) technology, and finally modern electron optics and its relationship to the Muslim golden age in science. The book’s fourth part discusses various applications of optics and light in today's world, including biophotonics, art, optical communication, nanotechnology, the eye as an optical instrument, remote sensing, and optics in medicine. In turn, the last part focuses on quantum optics, a modern field that grew out of the interaction of light and matter. Topics addressed include atom optics, slow, stored and stationary light, optical tests of the foundation of physics, quantum mechanical properties of light fields carrying orbital angular momentum, quantum communication, and Wave-Particle dualism in action.


From Photon to Neuron

From Photon to Neuron

Author: Philip Nelson

Publisher: Princeton University Press

Published: 2017-05-09

Total Pages: 512

ISBN-13: 1400885485

DOWNLOAD EBOOK

A richly illustrated undergraduate textbook on the physics and biology of light Students in the physical and life sciences, and in engineering, need to know about the physics and biology of light. Recently, it has become increasingly clear that an understanding of the quantum nature of light is essential, both for the latest imaging technologies and to advance our knowledge of fundamental life processes, such as photosynthesis and human vision. From Photon to Neuron provides undergraduates with an accessible introduction to the physics of light and offers a unified view of a broad range of optical and biological phenomena. Along the way, this richly illustrated textbook builds the necessary background in neuroscience, photochemistry, and other disciplines, with applications to optogenetics, superresolution microscopy, the single-photon response of individual photoreceptor cells, and more. With its integrated approach, From Photon to Neuron can be used as the basis for interdisciplinary courses in physics, biophysics, sensory neuroscience, biophotonics, bioengineering, or nanotechnology. The goal is always for students to gain the fluency needed to derive every result for themselves, so the book includes a wealth of exercises, including many that guide students to create computer-based solutions. Supplementary online materials include real experimental data to use with the exercises. Assumes familiarity with first-year undergraduate physics and the corresponding math Overlaps the goals of the MCAT, which now includes data-based and statistical reasoning Advanced chapters and sections also make the book suitable for graduate courses An Instructor's Guide and illustration package is available to professors


Quantum Bio-informatics

Quantum Bio-informatics

Author: Luigi Accardi

Publisher: World Scientific

Published: 2008

Total Pages: 469

ISBN-13: 981279316X

DOWNLOAD EBOOK

The purpose of this volume is examine bio-informatics and quantum information, which are growing rapidly at present, and to attempt to connect the two, with a view to enumerating and solving the many fundamental problems they entail. To this end, we look for interdisciplinary bridges in mathematics, physics, and information and life sciences. In particular, research into a new paradigm for information science and life science on the basis of quantum theory is emphasized.


Quantum Aspects of Life

Quantum Aspects of Life

Author: Derek Abbott

Publisher: World Scientific

Published: 2008

Total Pages: 469

ISBN-13: 1848162677

DOWNLOAD EBOOK

A quantum origin of life? -- Quantum mechanics and emergence -- Quantum coherence and the search for the first replicator -- Ultrafast quantum dynamics in photosynthesis -- Modelling quantum decoherence in biomolecules -- Molecular evolution -- Memory depends on the cytoskeleton, but is it quantum? -- Quantum metabolism and allometric scaling relations in biology -- Spectroscopy of the genetic code -- Towards understanding the origin of genetic languages -- Can arbitrary quantum systems undergo self-replication? -- A semi-quantum version of the game of life -- Evolutionary stability in quantum games -- Quantum transmemetic intelligence -- Dreams versus reality : plenary debate session on quantum computing -- Plenary debate: quantum effects in biology : trivial or not? -- Nontrivial quantum effects in biology : a skeptical physicists' view -- That's life! : the geometry of p electron clouds.


Physical Models of Living Systems

Physical Models of Living Systems

Author: Philip Nelson

Publisher: Macmillan Higher Education

Published: 2014-12-20

Total Pages: 365

ISBN-13: 1319036902

DOWNLOAD EBOOK

Written for intermediate-level undergraduates pursuing any science or engineering major, Physical Models of Living Systems helps students develop many of the competencies that form the basis of the new MCAT2015. The only prerequisite is first-year physics. With the more advanced "Track-2" sections at the end of each chapter, the book can be used in graduate-level courses as well.


Introduction to Modern Biophysics

Introduction to Modern Biophysics

Author: Mohammad Ashrafuzzaman

Publisher: CRC Press

Published: 2023-12-15

Total Pages: 435

ISBN-13: 1003821634

DOWNLOAD EBOOK

This textbook provides an introduction to the fundamental and applied aspects of biophysics for advanced undergraduate and graduate students of physics, chemistry, and biology. The application of physics principles and techniques in exploring biological systems has long been a tradition in scientific research. Biological systems hold naturally inbuilt physical principles and processes which are popularly explored. Systematic discoveries help us understand the structures and functions of individual biomolecules, biomolecular systems, cells, organelles, tissues, and even the physiological systems of animals and plants. Utilizing a physics- based scientific understanding of biological systems to explore disease is at the forefront of applied scientific research. This textbook covers key breakthroughs in biophysics whilst looking ahead to future horizons and directions of research. It contains models based on both classical and quantum mechanical treatments of biological systems. It explores diseases related to physical alterations in biomolecular structures and organizations alongside drug discovery strategies. It also discusses the cutting- edge applications of nanotechnologies in manipulating nanoprocesses in biological systems. Key Features: • Presents an accessible introduction to how physics principles and techniques can be used to understand biological and biochemical systems. • Addresses natural processes, mutations, and their purposeful manipulation. • Lays the groundwork for vitally important natural scientific, technological, and medical advances. Mohammad Ashrafuzzaman, a biophysicist and condensed matter scientist, is passionate about investigating biological and biochemical processes utilizing physics principles and techniques. He is a professor of biophysics at King Saud University’s Biochemistry Department in the College of Science, Riyadh, Saudi Arabia; the co- founder of MDT Canada Inc., and the founder of Child Life Development Institute, Edmonton, Canada. He has authored Biophysics and Nanotechnology of Ion Channels, Nanoscale Biophysics of the Cell, and Membrane Biophysics. He has also published about 50 peer- reviewed articles and several patents, edited two books, and has been serving on the editorial boards of Elsevier and Bentham Science journals. Dr. Ashrafuzzaman has held research and academic ranks at Bangladesh University of Engineering & Technology, University of Neuchatel (Switzerland), Helsinki University of Technology (Finland), Weill Medical College of Cornell University (USA), and University of Alberta (Canada). During 2013– 2018 he also served as a Visiting Professor at the Departments of Oncology, and Medical Microbiology and Immunology, of the University of Alberta. Dr. Ashrafuzzaman earned his highest academic degree, Doctor of Science (D.Sc.) in condensed matter physics from the University of Neuchatel, Switzerland in 2004.


Quantum Tunnelling in Enzyme-catalysed Reactions

Quantum Tunnelling in Enzyme-catalysed Reactions

Author: Rudolf K. Allemann

Publisher: Royal Society of Chemistry

Published: 2009

Total Pages: 412

ISBN-13: 0854041222

DOWNLOAD EBOOK

In recent years, there has been an explosion in knowledge and research associated with the field of enzyme catalysis and H-tunneling. Rich in its breath and depth, this introduction to modern theories and methods of study is suitable for experienced researchers those new to the subject. Edited by two leading experts, and bringing together the foremost practitioners in the field, this up-to-date account of a rapidly developing field sits at the interface between biology, chemistry and physics. It covers computational, kinetic and structural analysis of tunnelling and the synergy in combining these methods (with a major focus on H-tunneling reactions in enzyme systems). The book starts with a brief overview of proton and electron transfer history by Nobel Laureate, Rudolph A. Marcus. The reader is then guided through chapters covering almost every aspect of reactions in enzyme catalysis ranging from descriptions of the relevant quantum theory and quantum/classical theoretical methodology to the description of experimental results. The theoretical interpretation of these large systems includes both quantum mechanical and statistical mechanical computations, as well as simple more approximate models. Most of the chapters focus on enzymatic catalysis of hydride, proton and H" transfer, an example of the latter being proton coupled electron transfer. There is also a chapter on electron transfer in proteins. This is timely since the theoretical framework developed fifty years ago for treating electron transfers has now been adapted to H-transfers and electron transfers in proteins. Accessible in style, this book is suitable for a wide audience but will be particularly useful to advanced level undergraduates, postgraduates and early postdoctoral workers.