An Introduction to Quantum Spin Systems

An Introduction to Quantum Spin Systems

Author: John B. Parkinson

Publisher: Springer Science & Business Media

Published: 2010-09-20

Total Pages: 159

ISBN-13: 3642132898

DOWNLOAD EBOOK

The topic of lattice quantum spin systems is a fascinating and by now well established branch of theoretical physics. Based on a set of lectures, this book has a level of detail missing from others, and guides the reader through the fundamentals of the field.


Quantum Mechanics

Quantum Mechanics

Author: Mark Beck

Publisher: Oxford University Press

Published: 2012-07-01

Total Pages: 529

ISBN-13: 0199798230

DOWNLOAD EBOOK

This textbook presents quantum mechanics at the junior/senior undergraduate level. It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. These laboratories include "proving" that light contains photons, single-photon interference, and tests of local realism. The text begins by presenting the classical theory of polarization, moving on to describe the quantum theory of polarization. Analogies between the two theories minimize conceptual difficulties that students typically have when first presented with quantum mechanics. Furthermore, because the laboratories involve studying photons, using photon polarization as a prototypical quantum system allows the laboratory work to be closely integrated with the coursework. Polarization represents a two-dimensional quantum system, so the introduction to quantum mechanics uses two-dimensional state vectors and operators. This allows students to become comfortable with the mathematics of a relatively simple system, before moving on to more complicated systems. After describing polarization, the text goes on to describe spin systems, time evolution, continuous variable systems (particle in a box, harmonic oscillator, hydrogen atom, etc.), and perturbation theory. The book also includes chapters which describe material that is frequently absent from undergraduate texts: quantum measurement, entanglement, quantum field theory and quantum information. This material is connected not only to the laboratories described in the text, but also to other recent experiments. Other subjects covered that do not often make their way into undergraduate texts are coherence, complementarity, mixed states, the density operator and coherent states. Supplementary material includes further details about implementing the laboratories, including parts lists and software for running the experiments. Computer simulations of some of the experiments are available as well. A solutions manual for end-of-chapter problems is available to instructors.


Quantum Mechanics for Mathematicians

Quantum Mechanics for Mathematicians

Author: Leon Armenovich Takhtadzhi͡an

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 410

ISBN-13: 0821846302

DOWNLOAD EBOOK

Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.


Modern Quantum Mechanics

Modern Quantum Mechanics

Author: J. J. Sakurai

Publisher: Cambridge University Press

Published: 2017-09-21

Total Pages: 570

ISBN-13: 1108527426

DOWNLOAD EBOOK

Modern Quantum Mechanics is a classic graduate level textbook, covering the main quantum mechanics concepts in a clear, organized and engaging manner. The author, Jun John Sakurai, was a renowned theorist in particle theory. The second edition, revised by Jim Napolitano, introduces topics that extend the text's usefulness into the twenty-first century, such as advanced mathematical techniques associated with quantum mechanical calculations, while at the same time retaining classic developments such as neutron interferometer experiments, Feynman path integrals, correlation measurements, and Bell's inequality. A solution manual for instructors using this textbook can be downloaded from www.cambridge.org/9781108422413.


Quantum Processes Systems, and Information

Quantum Processes Systems, and Information

Author: Benjamin Schumacher

Publisher: Cambridge University Press

Published: 2010-03-25

Total Pages: 482

ISBN-13: 9780521875349

DOWNLOAD EBOOK

A new and exciting approach to the basics of quantum theory, this undergraduate textbook contains extensive discussions of conceptual puzzles and over 800 exercises and problems. Beginning with three elementary 'qubit' systems, the book develops the formalism of quantum theory, addresses questions of measurement and distinguishability, and explores the dynamics of quantum systems. In addition to the standard topics covered in other textbooks, it also covers communication and measurement, quantum entanglement, entropy and thermodynamics, and quantum information processing. This textbook gives a broad view of quantum theory by emphasizing dynamical evolution, and exploring conceptual and foundational issues. It focuses on contemporary topics, including measurement, time evolution, open systems, quantum entanglement, and the role of information.


The Physics of Quantum Mechanics

The Physics of Quantum Mechanics

Author: James Binney

Publisher: Oxford University Press, USA

Published: 2013-12

Total Pages: 408

ISBN-13: 0199688575

DOWNLOAD EBOOK

This title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world.


Quantum Mechanics

Quantum Mechanics

Author: Julian Schwinger

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 488

ISBN-13: 3662045893

DOWNLOAD EBOOK

A unique legacy, these lecture notes of Schwinger’s course held at the University of California at Los Angeles were carefully edited by his former collaborator Berthold-Georg Englert and constitute both a self-contained textbook on quantum mechanics and an indispensable source of reference on this fundamental subject by one of the foremost thinkers of twentieth century physics.


A Modern Approach to Quantum Mechanics

A Modern Approach to Quantum Mechanics

Author: John S. Townsend

Publisher: University Science Books

Published: 2000

Total Pages: 498

ISBN-13: 9781891389139

DOWNLOAD EBOOK

Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics allows lecturers to expose their undergraduates to Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new. Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems it gives students straightfoward examples of the structure of quantum mechanics. When wave mechanics is introduced later, students should perceive it correctly as only one aspect of quantum mechanics and not the core of the subject.


The Story of Spin

The Story of Spin

Author: Shin'ichirō Tomonaga

Publisher: University of Chicago Press

Published: 1997

Total Pages: 274

ISBN-13: 9780226807942

DOWNLOAD EBOOK

All atomic particles have a particular "spin." Simple as spin may sound, the quantum mechanical reality underlying it is complex and still poorly understood. Because of the wide range of physics needed for its understanding, spin is not described in sufficient depth by any standard textbook. Yet this mysterious quality and the statistics associated with it have vast practical importance to topics as wide-ranging as the stability of atoms and stars and magnetic resonance imaging. Originally published in 1974, Sin-itiro Tomonaga's The Story of Spin remains the most complete and accessible treatment of the subject, and is now available for the first time in English translation. Tomonaga tells the tale of the pioneers of physics and their difficult journey toward an understanding of the nature of spin and its relationship to statistics.


Kinematical Theory of Spinning Particles

Kinematical Theory of Spinning Particles

Author: M. Rivas

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 353

ISBN-13: 0306471337

DOWNLOAD EBOOK

Classical spin is described in terms of velocities and acceleration so that knowledge of advanced mathematics is not required. Written in the three-dimensional notation of vector calculus, it can be followed by undergraduate physics students, although some notions of Lagrangian dynamics and group theory are required. It is intended as a general course at a postgraduate level for all-purpose physicists. This book presents a unified approach to classical and quantum mechanics of spinning particles, with symmetry principles as the starting point. A classical concept of an elementary particle is presented. The variational statements to deal with spinning particles are revisited. It is shown that, by explicitly constructing different models, symmetry principles are sufficient for the description of either classical or quantum-mechanical elementary particles. Several spin effects are analyzed.