Quantum Mechanics in Matrix Form

Quantum Mechanics in Matrix Form

Author: Günter Ludyk

Publisher: Springer

Published: 2017-10-25

Total Pages: 217

ISBN-13: 3319263668

DOWNLOAD EBOOK

This book gives an introduction to quantum mechanics with the matrix method. Heisenberg's matrix mechanics is described in detail. The fundamental equations are derived by algebraic methods using matrix calculus. Only a brief description of Schrödinger's wave mechanics is given (in most books exclusively treated), to show their equivalence to Heisenberg's matrix method. In the first part the historical development of Quantum theory by Planck, Bohr and Sommerfeld is sketched, followed by the ideas and methods of Heisenberg, Born and Jordan. Then Pauli's spin and exclusion principles are treated. Pauli's exclusion principle leads to the structure of atoms. Finally, Dirac ́s relativistic quantum mechanics is shortly presented. Matrices and matrix equations are today easy to handle when implementing numerical algorithms using standard software as MAPLE and Mathematica.


Quantum Mechanics in Simple Matrix Form

Quantum Mechanics in Simple Matrix Form

Author: Thomas F. Jordan

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 274

ISBN-13: 0486137066

DOWNLOAD EBOOK

With this text, basic quantum mechanics becomes accessible to undergraduates with no background in mathematics beyond algebra. Includes more than 100 problems and 38 figures. 1986 edition.


The Historical Development of Quantum Theory

The Historical Development of Quantum Theory

Author: Jagdish Mehra

Publisher: Springer Science & Business Media

Published: 2000-12-28

Total Pages: 346

ISBN-13: 9780387951775

DOWNLOAD EBOOK

Quantum Theory, together with the principles of special and general relativity, constitute a scientific revolution that has profoundly influenced the way in which we think about the universe and the fundamental forces that govern it. The Historical Development of Quantum Theory is a definitive historical study of that scientific work and the human struggles that accompanied it from the beginning. Drawing upon such materials as the resources of the Archives for the History of Quantum Physics, the Niels Bohr Archives, and the archives and scientific correspondence of the principal quantum physicists, as well as Jagdish Mehra's personal discussions over many years with most of the architects of quantum theory, the authors have written a rigorous scientific history of quantum theory in a deeply human context. This multivolume work presents a rich account of an intellectual triumph: a unique analysis of the creative scientific process. The Historical Development of Quantum Theory is science, history, and biography, all wrapped in the story of a great human enterprise. Its lessons will be an aid to those working in the sciences and humanities alike.


Linear Operators for Quantum Mechanics

Linear Operators for Quantum Mechanics

Author: Thomas F. Jordan

Publisher: Courier Corporation

Published: 2012-09-20

Total Pages: 162

ISBN-13: 0486140547

DOWNLOAD EBOOK

Suitable for advanced undergraduates and graduate students, this compact treatment examines linear space, functionals, and operators; diagonalizing operators; operator algebras; and equations of motion. 1969 edition.


Quantum Mechanics of Particles and Wave Fields

Quantum Mechanics of Particles and Wave Fields

Author: Arthur March

Publisher: Courier Corporation

Published: 2006-01-01

Total Pages: 308

ISBN-13: 048644578X

DOWNLOAD EBOOK

A complete explanation of quantum mechanics, from its early non-relativistic formulation to the complex field theories used so extensively in modern theoretical research, this volume assumes no specialized knowledge of the subject. It stresses relativistic quantum mechanics, since this subject plays such an important role in research, explaining the principles clearly and imparting an accurate understanding of abstract concepts. This text deals with quantum mechanics from its earliest developments, covering both the quantum mechanics of wave fields and the older quantum theory of particles. The final chapter culminates with the author's presentation of his revolutionary theory of fundamental length--a concept designed to meet many of quantum theory's longstanding basic difficulties.


The Physics of Quantum Mechanics

The Physics of Quantum Mechanics

Author: James Binney

Publisher: Oxford University Press, USA

Published: 2013-12

Total Pages: 408

ISBN-13: 0199688575

DOWNLOAD EBOOK

This title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world.


Quantum Ontology

Quantum Ontology

Author: Peter J. Lewis

Publisher: Oxford University Press

Published: 2016-06-13

Total Pages: 233

ISBN-13: 0190618795

DOWNLOAD EBOOK

Metaphysicians should pay attention to quantum mechanics. Why? Not because it provides definitive answers to many metaphysical questions-the theory itself is remarkably silent on the nature of the physical world, and the various interpretations of the theory on offer present conflicting ontological pictures. Rather, quantum mechanics is essential to the metaphysician because it reshapes standard metaphysical debates and opens up unforeseen new metaphysical possibilities. Even if quantum mechanics provides few clear answers, there are good reasons to think that any adequate understanding of the quantum world will result in a radical reshaping of our classical world-view in some way or other. Whatever the world is like at the atomic scale, it is almost certainly not the swarm of particles pushed around by forces that is often presupposed. This book guides readers through the theory of quantum mechanics and its implications for metaphysics in a clear and accessible way. The theory and its various interpretations are presented with a minimum of technicality. The consequences of these interpretations for metaphysical debates concerning realism, indeterminacy, causation, determinism, holism, and individuality (among other topics) are explored in detail, stressing the novel form that the debates take given the empirical facts in the quantum domain. While quantum mechanics may not deliver unconditional pronouncements on these issues, the range of possibilities consistent with our knowledge of the empirical world is relatively small-and each possibility is metaphysically revisionary in some way. This book will appeal to researchers, students, and anybody else interested in how science informs our world-view.


The Matrix Perturbation Method in Quantum Mechanics

The Matrix Perturbation Method in Quantum Mechanics

Author: Francisco Soto-Eguibar

Publisher: Springer Nature

Published: 2024-02-20

Total Pages: 201

ISBN-13: 3031485467

DOWNLOAD EBOOK

This book provides an alternative approach to time-independent perturbation theory in non-relativistic quantum mechanics. It allows easy application to any initial condition because it is based on an approximation to the evolution operator and may also be used on unitary evolution operators for the unperturbed Hamiltonian in the case where the eigenvalues cannot be found. This flexibility sets it apart from conventional perturbation theory. The matrix perturbation method also gives new theoretical insights; for example, it provides corrections to the energy and wave function in one operation. Another notable highlight is the facility to readily derive a general expression for the normalization constant at m-th order, a significant difference between the approach within and those already in the literature. Another unique aspect of the matrix perturbation method is that it can be extended directly to the Lindblad master equation. The first and second-order corrections are obtained for this equation and the method is generalized for higher orders. An alternative form of the Dyson series, in matrix form instead of integral form, is also obtained. Throughout the book, several benchmark examples and practical applications underscore the potential, accuracy and good performance of this novel approach. Moreover, the method's applicability extends to some specific time-dependent Hamiltonians. This book represents a valuable addition to the literature on perturbation theory in quantum mechanics and is accessible to students and researchers alike.


Einstein in Matrix Form

Einstein in Matrix Form

Author: Günter Ludyk

Publisher: Springer Science & Business Media

Published: 2013-06-12

Total Pages: 202

ISBN-13: 3642357989

DOWNLOAD EBOOK

This book is an introduction to the theories of Special and General Relativity. The target audience are physicists, engineers and applied scientists who are looking for an understandable introduction to the topic - without too much new mathematics. The fundamental equations of Einstein's theory of Special and General Relativity are derived using matrix calculus, without the help of tensors. This feature makes the book special and a valuable tool for scientists and engineers with no experience in the field of tensor calculus. In part I the foundations of Special Relativity are developed, part II describes the structure and principle of General Relativity. Part III explains the Schwarzschild solution of spherical body gravity and examines the "Black Hole" phenomenon. Any necessary mathematical tools are user friendly provided, either directly in the text or in the appendices.


Advanced Quantum Mechanics

Advanced Quantum Mechanics

Author: RAINER DICK

Publisher: Springer

Published: 2016-07-01

Total Pages: 694

ISBN-13: 3319256750

DOWNLOAD EBOOK

In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of quantum electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquired an understanding of basic quantum mechanics and classical field theory, canonical field quantization is easy. Furthermore, the integrated discussion of transition amplitudes naturally leads to the notions of transition probabilities, decay rates, absorption cross sections and scattering cross sections, which are important for all experimental techniques that use photon probes.