Quantum Materials, Devices, and Applications

Quantum Materials, Devices, and Applications

Author: Mohamed Henini

Publisher: Elsevier

Published: 2022-08-24

Total Pages: 299

ISBN-13: 0128209135

DOWNLOAD EBOOK

Quantum Materials, Devices, and Applications covers the advances made in quantum technologies, both in research and mass production for applications in electronics, photonics, sensing, biomedical, environmental and agricultural applications. The book includes new materials, new device structures that are commercially available, and many more at the advanced research stage. It reviews the most relevant, current and emerging materials and device structures, organized by key applications and covers existing devices, technologies and future possibilities within a common framework of high-performance quantum devices. This book will be ideal for researchers and practitioners in academia, industry and those in materials science and engineering, electrical engineering and physics disciplines. - Comprehensively covers the important and rapidly growing area of quantum technologies by focusing on current and emerging materials, devices and applications - Takes an applied approach to the topic by addressing key applications in electronics, optoelectronics, photonics, sensing and the environment - Addresses ethical considerations, remaining challenges and future opportunities for quantum materials and devices


Quantum Materials, Devices, and Applications

Quantum Materials, Devices, and Applications

Author: Mohamed Henini

Publisher: Elsevier

Published: 2022-08-30

Total Pages: 298

ISBN-13: 0128205660

DOWNLOAD EBOOK

Quantum Materials, Devices, and Applications covers the advances made in quantum technologies, both in research and mass production for applications in electronics, photonics, sensing, biomedical, environmental and agricultural applications. The book includes new materials, new device structures that are commercially available, and many more at the advanced research stage. It reviews the most relevant, current and emerging materials and device structures, organized by key applications and covers existing devices, technologies and future possibilities within a common framework of high-performance quantum devices. This book will be ideal for researchers and practitioners in academia, industry and those in materials science and engineering, electrical engineering and physics disciplines. Comprehensively covers the important and rapidly growing area of quantum technologies by focusing on current and emerging materials, devices and applications Takes an applied approach to the topic by addressing key applications in electronics, optoelectronics, photonics, sensing and the environment Addresses ethical considerations, remaining challenges and future opportunities for quantum materials and devices


Technology of Quantum Devices

Technology of Quantum Devices

Author: Manijeh Razeghi

Publisher: Springer Science & Business Media

Published: 2009-12-11

Total Pages: 570

ISBN-13: 1441910565

DOWNLOAD EBOOK

Technology of Quantum Devices offers a multi-disciplinary overview of solid state physics, photonics and semiconductor growth and fabrication. Readers will find up-to-date coverage of compound semiconductors, crystal growth techniques, silicon and compound semiconductor device technology, in addition to intersubband and semiconductor lasers. Recent findings in quantum tunneling transport, quantum well intersubband photodetectors (QWIP) and quantum dot photodetectors (QWDIP) are described, along with a thorough set of sample problems.


Physics of Electronic Materials

Physics of Electronic Materials

Author: Jørgen Rammer

Publisher: Cambridge University Press

Published: 2017-03-16

Total Pages: 451

ISBN-13: 1108228585

DOWNLOAD EBOOK

Adopting a uniquely pedagogical approach, this comprehensive textbook on the quantum mechanics of semiconductor materials and devices focuses on the materials, components and devices themselves whilst incorporating a substantial amount of fundamental physics related to condensed matter theory and quantum mechanics. Written primarily for advanced undergraduate students in physics and engineering, this book can also be used as a supporting text for introductory quantum mechanics courses, and will be of interest to anyone interested in how electronic devices function at a fundamental level. Complete with numerous exercises, and with all the necessary mathematics and physics included in appendices, this book guides the reader seamlessly through the principles of quantum mechanics and the quantum theory of metals and semiconductors, before describing in detail how devices are exploited within electric circuits and in the hardware of computers, for example as amplifiers, switches and transistors.


Molecular Nonlinear Optics

Molecular Nonlinear Optics

Author: Joseph Zyss

Publisher: Academic Press

Published: 2013-10-22

Total Pages: 500

ISBN-13: 0080926703

DOWNLOAD EBOOK

This volume brings together contributions from world renowned researchers on molecular nonlinear optics. It takes as its impetus work done over the last five years in which newly developed optoelectronic devices havedeepened our understanding of the fundamental physics and chemistry underlying these materials. Organic materials involving thin films, polymers, and resulting devices will be emphasized.


Domestic Manufacturing Capabilities for Critical DoD Applications

Domestic Manufacturing Capabilities for Critical DoD Applications

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2019-12-21

Total Pages: 109

ISBN-13: 0309494761

DOWNLOAD EBOOK

Recent advancements in quantum-enabled systems present a variety of new opportunities and challenges. These technologies are important developments for a variety of computing, communications, and sensing applications. However, many materials and components relevant to quantum-enabled systems exist outside of the United States, and it is important to promote the development of assured domestic sources of materials, manufacturing capabilities, and expertise. The National Academies of Sciences, Engineering, and Medicine convened a 2-day workshop to explore implications and concerns related to the application of quantum-enabled systems in the United States. This workshop focused on quantum-enabled computing systems, quantum communications and networks, and quantum sensing opportunities. Participants explored the path to quantum computing, communications, and networks, opportunities for collaboration, as well as key gaps, supply chain concerns, and security issues. This publication summarizes the presentations and discussions from the workshop.


Physics of Quantum Electron Devices

Physics of Quantum Electron Devices

Author: Federico Capasso

Publisher: Springer Science & Business Media

Published: 2013-03-07

Total Pages: 416

ISBN-13: 3642747515

DOWNLOAD EBOOK

The ability to engineer the bandstructure and the wavefunction over length scales previously inaccessible to technology using artificially structured materials and nanolithography has led to a new class of electron semiconductor devices whose operation is controlled by quantum effects. These structures not only represent exciting tools for investigating new quantum phenomena in semiconductors, but also offer exciting opportunities for applications. This book gives the first comprehensive treatment of the physics of quantum electron devices. This interdisciplinary field, at the junction between material science, physics and technology, has witnessed an explosive growth in recent years. This volume presents a detailed coverage of the physics of the underlying phenomena, and their device and circuit applications, together with fabrication and growth technology.


Fundamentals of Electroceramics

Fundamentals of Electroceramics

Author: R. K. Pandey

Publisher: John Wiley & Sons

Published: 2019-01-07

Total Pages: 304

ISBN-13: 1119057345

DOWNLOAD EBOOK

The first textbook to provide in-depth treatment of electroceramics with emphasis on applications in microelectronics, magneto-electronics, spintronics, energy storage and harvesting, sensors and detectors, magnetics, and in electro-optics and acousto-optics Electroceramics is a class of ceramic materials used primarily for their electrical properties. This book covers the important topics relevant to this growing field and places great emphasis on devices and applications. It provides sufficient background in theory and mathematics so that readers can gain insight into phenomena that are unique to electroceramics. Each chapter has its own brief introduction with an explanation of how the said content impacts technology. Multiple examples are provided to reinforce the content as well as numerous end-of-chapter problems for students to solve and learn. The book also includes suggestions for advanced study and key words relevant to each chapter. Fundamentals of Electroceramics: Materials, Devices and Applications offers eleven chapters covering: 1.Nature and types of solid materials; 2. Processing of Materials; 3. Methods for Materials Characterization; 4. Binding Forces in Solids and Essential Elements of Crystallography; 5. Dominant Forces and Effects in Electroceramics; 6. Coupled Nonlinear Effects in Electroceramics; 7. Elements of Semiconductor; 8. Electroceramic Semiconductor Devices; 9. Electroceramics and Green Energy; 10.Electroceramic Magnetics; and 11. Electro-optics and Acousto-optics. Provides an in-depth treatment of electroceramics with the emphasis on fundamental theoretical concepts, devices, and applications with focus on non-linear dielectrics Emphasizes applications in microelectronics, magneto-electronics, spintronics, energy storage and harvesting, sensors and detectors, magnetics and in electro-optics and acousto-optics Introductory textbook for students to learn and make an impact on technology Motivates students to get interested in research on various aspects of electroceramics at undergraduate and graduate levels leading to a challenging career path. Includes examples and problem questions within every chapter that prepare students well for independent thinking and learning. Fundamentals of Electroceramics: Materials, Devices and Applications is an invaluable academic textbook that will benefit all students, professors, researchers, scientists, engineers, and teachers of ceramic engineering, electrical engineering, applied physics, materials science, and engineering.


Quantum Mechanics

Quantum Mechanics

Author: Jasprit Singh

Publisher: John Wiley & Sons

Published: 2008-11-20

Total Pages: 534

ISBN-13: 3527618201

DOWNLOAD EBOOK

Explore the relationship between quantum mechanics and information-age applications This volume takes an altogether unique approach to quantum mechanics. Providing an in-depth exposition of quantum mechanics fundamentals, it shows how these concepts are applied to most of today's information technologies, whether they are electronic devices or materials. No other text makes this critical, essential leap from theory to real-world applications. The book's lively discussion of the mathematics involved fits right in with contemporary multidisciplinary trends in education: Once the basic formulation has been derived in a given chapter, the connection to important technological problems is summarily described. A book for the information age, Quantum Mechanics: Fundamentals and Applications to Technology promises to become a standard in departments of electrical engineering, applied physics, and materials science, as well as physics. It is an excellent text for senior undergraduate and graduate students, and a helpful reference for practicing scientists, engineers, and chemists in the semiconductor and electronic industries.