Non-covalent Interactions in Quantum Chemistry and Physics

Non-covalent Interactions in Quantum Chemistry and Physics

Author: Alberto Otero de la Roza

Publisher: Elsevier

Published: 2017-06-15

Total Pages: 478

ISBN-13: 0128098368

DOWNLOAD EBOOK

Non-covalent Interactions in Quantum Chemistry and Physics: Theory and Applications provides an entry point for newcomers and a standard reference for researchers publishing in the area of non-covalent interactions. Written by the leading experts in this field, the book enables experienced researchers to keep up with the most recent developments, emerging methods, and relevant applications. The book gives a comprehensive, in-depth overview of the available quantum-chemistry methods for intermolecular interactions and details the most relevant fields of application for those techniques. Theory and applications are put side-by-side, which allows the reader to gauge the strengths and weaknesses of different computational techniques. - Summarizes the state-of-the-art in the computational intermolecular interactions field in a comprehensive work - Introduces students and researchers from related fields to the topic of computational non-covalent interactions, providing a single unified source of information - Presents the theoretical foundations of current quantum mechanical methods alongside a collection of examples on how they can be applied to solve practical problems


Molecular Quantum Electrodynamics

Molecular Quantum Electrodynamics

Author: D. P. Craig

Publisher: Courier Corporation

Published: 2012-11-13

Total Pages: 338

ISBN-13: 0486135632

DOWNLOAD EBOOK

Self-contained, systematic introduction examines application of quantum electrodynamics to interpretation of optical experiments on atoms and molecules and explains the quantum theory of electromagnetic radiation and its interaction with matter.


Dissipative Quantum Mechanics of Nanostructures

Dissipative Quantum Mechanics of Nanostructures

Author: Andrei D. Zaikin

Publisher: CRC Press

Published: 2019-05-24

Total Pages: 584

ISBN-13: 1000024202

DOWNLOAD EBOOK

Continuing miniaturization of electronic devices, together with the quickly growing number of nanotechnological applications, demands a profound understanding of the underlying physics. Most of the fundamental problems of modern condensed matter physics involve various aspects of quantum transport and fluctuation phenomena at the nanoscale. In nanostructures, electrons are usually confined to a limited volume and interact with each other and lattice ions, simultaneously suffering multiple scattering events on impurities, barriers, surface imperfections, and other defects. Electron interaction with other degrees of freedom generally yields two major consequences, quantum dissipation and quantum decoherence. In other words, electrons can lose their energy and ability for quantum interference even at very low temperatures. These two different, but related, processes are at the heart of all quantum phenomena discussed in this book. This book presents copious details to facilitate the understanding of the basic physics behind a result and the learning to technically reproduce the result without delving into extra literature. The book subtly balances the description of theoretical methods and techniques and the display of the rich landscape of the physical phenomena that can be accessed by these methods. It is useful for a broad readership ranging from master’s and PhD students to postdocs and senior researchers.


Ideas of Quantum Chemistry

Ideas of Quantum Chemistry

Author: Lucjan Piela

Publisher: Elsevier

Published: 2006-11-28

Total Pages: 1122

ISBN-13: 0080466761

DOWNLOAD EBOOK

Ideas of Quantum Chemistry shows how quantum mechanics is applied to chemistry to give it a theoretical foundation. The structure of the book (a TREE-form) emphasizes the logical relationships between various topics, facts and methods. It shows the reader which parts of the text are needed for understanding specific aspects of the subject matter. Interspersed throughout the text are short biographies of key scientists and their contributions to the development of the field.Ideas of Quantum Chemistry has both textbook and reference work aspects. Like a textbook, the material is organized into digestable sections with each chapter following the same structure. It answers frequently asked questions and highlights the most important conclusions and the essential mathematical formulae in the text. In its reference aspects, it has a broader range than traditional quantum chemistry books and reviews virtually all of the pertinent literature. It is useful both for beginners as well as specialists in advanced topics of quantum chemistry. The book is supplemented by an appendix on the Internet.* Presents the widest range of quantum chemical problems covered in one book * Unique structure allows material to be tailored to the specific needs of the reader * Informal language facilitates the understanding of difficult topics


Interacting Electrons and Quantum Magnetism

Interacting Electrons and Quantum Magnetism

Author: Assa Auerbach

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 249

ISBN-13: 1461208696

DOWNLOAD EBOOK

In the excitement and rapid pace of developments, writing pedagogical texts has low priority for most researchers. However, in transforming my lecture l notes into this book, I found a personal benefit: the organization of what I understand in a (hopefully simple) logical sequence. Very little in this text is my original contribution. Most of the knowledge was collected from the research literature. Some was acquired by conversations with colleagues; a kind of physics oral tradition passed between disciples of a similar faith. For many years, diagramatic perturbation theory has been the major theoretical tool for treating interactions in metals, semiconductors, itiner ant magnets, and superconductors. It is in essence a weak coupling expan sion about free quasiparticles. Many experimental discoveries during the last decade, including heavy fermions, fractional quantum Hall effect, high temperature superconductivity, and quantum spin chains, are not readily accessible from the weak coupling point of view. Therefore, recent years have seen vigorous development of alternative, nonperturbative tools for handling strong electron-electron interactions. I concentrate on two basic paradigms of strongly interacting (or con strained) quantum systems: the Hubbard model and the Heisenberg model. These models are vehicles for fundamental concepts, such as effective Ha miltonians, variational ground states, spontaneous symmetry breaking, and quantum disorder. In addition, they are used as test grounds for various nonperturbative approximation schemes that have found applications in diverse areas of theoretical physics.


Computational Strong-Field Quantum Dynamics

Computational Strong-Field Quantum Dynamics

Author: Dieter Bauer

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2017-04-24

Total Pages: 355

ISBN-13: 3110419343

DOWNLOAD EBOOK

This graduate textbook introduces the com-putational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach. Contents How to propagate a wavefunction? Calculation of typical strong-field observables Time-dependent relativistic wave equations: Numerics of the Dirac and the Klein-Gordon equation Time-dependent density functional theory The multiconfiguration time-dependent Hartree-Fock method Time-dependent configuration interaction singles Strong-field approximation and quantum orbits Microscopic particle-in-cell approach


The Quantum Mechanics of Many-Body Systems

The Quantum Mechanics of Many-Body Systems

Author: D.J. Thouless

Publisher: Courier Corporation

Published: 2014-01-15

Total Pages: 258

ISBN-13: 0486493571

DOWNLOAD EBOOK

"Unabridged republication of the second edition of the work, originally published in the Pure and applied physics series by Academic Press, Inc., New York, in 1972"--Title page verso.


Quantum Information With Continuous Variables Of Atoms And Light

Quantum Information With Continuous Variables Of Atoms And Light

Author: Nicolas J Cerf

Publisher: World Scientific

Published: 2007-02-06

Total Pages: 629

ISBN-13: 1908979364

DOWNLOAD EBOOK

Quantum information describes the new field which bridges quantum physics and information science. The quantum world allows for completely new architectures and protocols. While originally formulated in continuous quantum variables, the field worked almost exclusively with discrete variables, such as single photons and photon pairs. The renaissance of continuous variables came with European research consortia such as ACQUIRE (Advanced Coherent Quantum Information Research) in the late 1990s, and QUICOV (Quantum Information with Continuous Variables) from 2000-2003. The encouraging research results of QUICOV and the new conference series CVQIP (Continuous Variable Quantum Information Processing) triggered the idea for this book.This book presents the state of the art of quantum information with continuous quantum variables. The individual chapters discuss results achieved in QUICOV and presented at the first five CVQIP conferences from 2002-2006. Many world-leading scientists working on continuous variables outside Europe also contribute to the book./a


The Interaction of Spin with Gravity in Particle Physics

The Interaction of Spin with Gravity in Particle Physics

Author: Gaetano Lambiase

Publisher:

Published: 2021

Total Pages: 0

ISBN-13: 9783030847722

DOWNLOAD EBOOK

This book seeks to present a new way of thinking about the interaction of gravitational fields with quantum systems. Despite the massive amounts of research and experimentation, the myriad meetings, seminars and conferences, all of the articles, treatises and books, and the seemingly endless theorization, quantization and just plain speculation that have been engaged in regarding our evolving understanding of the quantum world, that world remains an enigma, even to the experts. The usefulness of general relativity in this regard has proven to be imperfect at best, but there is a new approach. We do not simply have to accept the limitations of Einstein's most celebrated theorem in regard to quantum theory; we can also embrace them, and thereby utilize them, to reveal new facts about the behavior of quantum systems within inertial and gravitational fields, and therefore about the very structure of space-time at the quantum level. By taking existing knowledge of the essential functionality of spin (along with the careful identification of the omnipresent inertial effects) and applying it to the quantum world, the book gives the reader a much clearer picture of the difference between the classical and quantum behaviors of a particle, shows that Einstein's ideas may not be as incompatible within this realm as many have come to believe, sparks new revelations of the way in which gravity affects quantum systems and brings a new level of efficiency-quantum efficiency, if you will-to the study of gravitational theory.


Atom-Photon Interactions

Atom-Photon Interactions

Author: Claude Cohen-Tannoudji

Publisher: John Wiley & Sons

Published: 1998-03-23

Total Pages: 691

ISBN-13: 0471293369

DOWNLOAD EBOOK

Atom-Photon Interactions: Basic Processes and Applications allows the reader to master various aspects of the physics of the interaction between light and matter. It is devoted to the study of the interactions between photons and atoms in atomic and molecular physics, quantum optics, and laser physics. The elementary processes in which photons are emitted, absorbed, scattered, or exchanged between atoms are treated in detail and described using diagrammatic representation. The book presents different theoretical approaches, including: Perturbative methods The resolvent method Use of the master equation The Langevin equation The optical Bloch equations The dressed-atom approach Each method is presented in a self-contained manner so that it may be studied independently. Many applications of these approaches to simple and important physical phenomena are given to illustrate the potential and limitations of each method.