Quantum Information with Continuous Variables of Atoms and Light

Quantum Information with Continuous Variables of Atoms and Light

Author: N. J. Cerf

Publisher: World Scientific

Published: 2007

Total Pages: 629

ISBN-13: 1860948162

DOWNLOAD EBOOK

Quantum information describes the new field which bridges quantum physics and information science. The quantum world allows for completely new architectures and protocols. While originally formulated in continuous quantum variables, the field worked almost exclusively with discrete variables, such as single photons and photon pairs. The renaissance of continuous variables came with European research consortia such as ACQUIRE (Advanced Coherent Quantum Information Research) in the late 1990s, and QUICOV (Quantum Information with Continuous Variables) from 2000OCo2003. The encouraging research results of QUICOV and the new conference series CVQIP (Continuous Variable Quantum Information Processing) triggered the idea for this book. This book presents the state of the art of quantum information with continuous quantum variables. The individual chapters discuss results achieved in QUICOV and presented at the first five CVQIP conferences from 2002OCo2006. Many world-leading scientists working on continuous variables outside Europe also contribute to the book.


Quantum Information with Continuous Variables of Atoms and Light

Quantum Information with Continuous Variables of Atoms and Light

Author: N. J. Cerf

Publisher:

Published: 2007

Total Pages: 604

ISBN-13: 9781860947766

DOWNLOAD EBOOK

Quantum information describes the new field which bridges quantum physics and information science. The quantum world allows for completely new architectures and protocols. While originally formulated in continuous quantum variables, the field worked almost exclusively with discrete variables, such as single photons and photon pairs. The renaissance of continuous variables came with European research consortia such as ACQUIRE (Advanced Coherent Quantum Information Research) in the late 1990s, and QUICOV (Quantum Information with Continuous Variables) from 2000-2003. The encouraging research results of QUICOV and the new conference series CVQIP (Continuous Variable Quantum Information Processing) triggered the idea for this book. continuous quantum variables. The individual chapters discuss results achieved in QUICOV and presented at the first five CVQIP conferences from 2002-2006. Many world-leading scientists working on continuous variables outside Europe also contribute to the book.


An Introduction to the Formalism of Quantum Information with Continuous Variables

An Introduction to the Formalism of Quantum Information with Continuous Variables

Author: Carlos Navarrete-Benlloch

Publisher: Morgan & Claypool Publishers

Published: 2016-01-01

Total Pages: 147

ISBN-13: 1681744066

DOWNLOAD EBOOK

Quantum information is an emerging field which has attracted a lot of attention in the last couple of decades. It is a broad subject which extends from the most applied questions (e.g. how to build quantum computers or secure cryptographic systems) to the most theoretical problems concerning the formalism and interpretation of quantum mechanics, its complexity, and its potential to go beyond classical physics. This book is an introduction to quantum information with special emphasis on continuous-variable systems (such as light) which can be described as collections of harmonic oscillators. It covers a selection of basic concepts, focusing on their physical meaning and mathematical treatment. It starts from the very first principles of quantum mechanics, and builds up the concepts and techniques following a logical progression. This is an excellent reference for students with a full semester of standard quantum mechanics and researchers in closely related fields.


Quantum Information with Continuous Variables

Quantum Information with Continuous Variables

Author: S.L. Braunstein

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 419

ISBN-13: 9401512582

DOWNLOAD EBOOK

Quantum information may sound like science fiction but is, in fact, an active and extremely promising area of research, with a big dream: to build a quantum computer capable of solving problems that a classical computer could not even begin to handle. Research in quantum information science is now at an advanced enough stage for this dream to be credible and well-worth pursuing. It is, at the same time, too early to predict how quantum computers will be built, and what potential technologies will eventually strike gold in their ability to manipulate and process quantum information. One direction that has reaped many successes in quantum information processing relies on continuous variables. This area is bustling with theoretical and experimental achievements, from continuous-variable teleportation, to in-principle demonstrations of universal computation and efficient error correction. Now the time has come to compile some of the major results into one volume. In this book the leading researchers of the field present up-to-date developments of continuous-variable quantum information. This book is organized to suit many reader levels with introductions to every topic and in-depth discussions of theoretical and experimental results.


An Introduction to the Formalism of Quantum Information with Continuous Variables

An Introduction to the Formalism of Quantum Information with Continuous Variables

Author: Carlos Navarrete-Benlloch

Publisher: Morgan & Claypool Publishers

Published: 2016-01-01

Total Pages: 115

ISBN-13: 1681744058

DOWNLOAD EBOOK

Quantum information is an emerging field which has attracted a lot of attention in the last couple of decades. It is a broad subject which extends from the most applied questions (e.g. how to build quantum computers or secure cryptographic systems) to the most theoretical problems concerning the formalism and interpretation of quantum mechanics, its complexity, and its potential to go beyond classical physics. This book is an introduction to quantum information with special emphasis on continuous-variable systems (such as light) which can be described as collections of harmonic oscillators. It covers a selection of basic concepts, focusing on their physical meaning and mathematical treatment. It starts from the very first principles of quantum mechanics, and builds up the concepts and techniques following a logical progression. This is an excellent reference for students with a full semester of standard quantum mechanics and researchers in closely related fields.


Quantum Information and Quantum Computing

Quantum Information and Quantum Computing

Author: Mikio Nakahara

Publisher: World Scientific

Published: 2013

Total Pages: 194

ISBN-13: 9814425222

DOWNLOAD EBOOK

The open research center project "Interdisciplinary fundamental research toward realization of a quantum computer" has been supported by the Ministry of Education, Japan for five years. This is a collection of the research outcomes by the members engaged in the project. To make the presentation self-contained, it starts with an overview by Mikio Nakahara, which serves as a concise introduction to quantum information and quantum computing. Subsequent contributions include subjects from physics, chemistry, mathematics, and information science, reflecting upon the wide variety of scientists working under this project. These contributions introduce NMR quantum computing and related techniques, number theory and coding theory, quantum error correction, photosynthesis, non-classical correlations and entanglement, neutral atom quantum computer, among others. Each of the contributions will serve as a short introduction to these cutting edge research fields.


Introduction to Optical Quantum Information Processing

Introduction to Optical Quantum Information Processing

Author: Pieter Kok

Publisher: Cambridge University Press

Published: 2010-04-22

Total Pages: 504

ISBN-13: 9780521519144

DOWNLOAD EBOOK

Quantum information processing offers fundamental improvements over classical information processing, such as computing power, secure communication, and high-precision measurements. However, the best way to create practical devices is not yet known. This textbook describes the techniques that are likely to be used in implementing optical quantum information processors. After developing the fundamental concepts in quantum optics and quantum information theory, the book shows how optical systems can be used to build quantum computers according to the most recent ideas. It discusses implementations based on single photons and linear optics, optically controlled atoms and solid-state systems, atomic ensembles, and optical continuous variables. This book is ideal for graduate students beginning research in optical quantum information processing. It presents the most important techniques of the field using worked examples and over 120 exercises.


Digital Quantum Information Processing with Continuous-Variable Systems

Digital Quantum Information Processing with Continuous-Variable Systems

Author: Takaya Matsuura

Publisher: Springer Nature

Published: 2023-02-06

Total Pages: 172

ISBN-13: 9811982880

DOWNLOAD EBOOK

The book provides theoretical methods of connecting discrete-variable quantum information processing to continuous-variable one. It covers the two major fields of quantum information processing, quantum communication and quantum computation, leading to achievement of a long-sought full security of continuous-variable quantum key distribution (QKD) and proposal of a resource-efficient method for optical quantum computing. Firstly, the book provides a security of continuous-variable QKD against arbitrary attacks under a realistic condition such as finite communication rounds and the use of digitized information processing. The book also provides the unified view for conventionally used approximate Gottesman-Kitaev-Preskill (GKP) codes, which encodes qudits on a continuous-variable system, enabling direct comparison between researches based on different approximations. The book finally proposes a resource-efficient method to realize the universal optical quantum computation using the GKP code via the direct preparation of the GKP magic state instead of GKP Pauli states. Feasibility of the proposed protocol is discussed based on the existing experimental proposals for the GKP state preparation.