Quantum Independent Increment Processes II

Quantum Independent Increment Processes II

Author: Ole E. Barndorff-Nielsen

Publisher: Springer Science & Business Media

Published: 2006

Total Pages: 364

ISBN-13: 9783540244073

DOWNLOAD EBOOK

Lectures given at the school "Quantum Independent Increment Processes: Structure and Applications to Physics" held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald in March 9-22, 2003.


Quantum Independent Increment Processes II

Quantum Independent Increment Processes II

Author: Ole E Barndorff-Nielsen

Publisher: Springer

Published: 2005-11-24

Total Pages: 351

ISBN-13: 3540323856

DOWNLOAD EBOOK

This is the second of two volumes containing the revised and completed notes of lectures given at the school "Quantum Independent Increment Processes: Structure and Applications to Physics". This school was held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald in March, 2003, and supported by the Volkswagen Foundation. The school gave an introduction to current research on quantum independent increment processes aimed at graduate students and non-specialists working in classical and quantum probability, operator algebras, and mathematical physics. The present second volume contains the following lectures: "Random Walks on Finite Quantum Groups" by Uwe Franz and Rolf Gohm, "Quantum Markov Processes and Applications in Physics" by Burkhard Kümmerer, Classical and Free Infinite Divisibility and Lévy Processes" by Ole E. Barndorff-Nielsen, Steen Thorbjornsen, and "Lévy Processes on Quantum Groups and Dual Groups" by Uwe Franz.


Mutational Analysis

Mutational Analysis

Author: Thomas Lorenz

Publisher: Springer

Published: 2010-05-29

Total Pages: 526

ISBN-13: 3642124712

DOWNLOAD EBOOK

Ordinary differential equations play a central role in science and have been extended to evolution equations in Banach spaces. For many applications, however, it is difficult to specify a suitable normed vector space. Shapes without a priori restrictions, for example, do not have an obvious linear structure. This book generalizes ordinary differential equations beyond the borders of vector spaces with a focus on the well-posed Cauchy problem in finite time intervals. Here are some of the examples: - Feedback evolutions of compact subsets of the Euclidean space - Birth-and-growth processes of random sets (not necessarily convex) - Semilinear evolution equations - Nonlocal parabolic differential equations - Nonlinear transport equations for Radon measures - A structured population model - Stochastic differential equations with nonlocal sample dependence and how they can be coupled in systems immediately - due to the joint framework of Mutational Analysis. Finally, the book offers new tools for modelling.


Holomorphic Dynamical Systems

Holomorphic Dynamical Systems

Author: Nessim Sibony

Publisher: Springer Science & Business Media

Published: 2010-07-31

Total Pages: 357

ISBN-13: 3642131700

DOWNLOAD EBOOK

The theory of holomorphic dynamical systems is a subject of increasing interest in mathematics, both for its challenging problems and for its connections with other branches of pure and applied mathematics. A holomorphic dynamical system is the datum of a complex variety and a holomorphic object (such as a self-map or a vector ?eld) acting on it. The study of a holomorphic dynamical system consists in describing the asymptotic behavior of the system, associating it with some invariant objects (easy to compute) which describe the dynamics and classify the possible holomorphic dynamical systems supported by a given manifold. The behavior of a holomorphic dynamical system is pretty much related to the geometry of the ambient manifold (for instance, - perbolic manifolds do no admit chaotic behavior, while projective manifolds have a variety of different chaotic pictures). The techniques used to tackle such pr- lems are of variouskinds: complexanalysis, methodsof real analysis, pluripotential theory, algebraic geometry, differential geometry, topology. To cover all the possible points of view of the subject in a unique occasion has become almost impossible, and the CIME session in Cetraro on Holomorphic Dynamical Systems was not an exception.


Smooth Ergodic Theory for Endomorphisms

Smooth Ergodic Theory for Endomorphisms

Author: Min Qian

Publisher: Springer

Published: 2009-07-07

Total Pages: 292

ISBN-13: 3642019544

DOWNLOAD EBOOK

Ideal for researchers and graduate students, this volume sets out a general smooth ergodic theory for deterministic dynamical systems generated by non-invertible endomorphisms. Its focus is on the relations between entropy, Lyapunov exponents and dimensions.


Séminaire de Probabilités XLII

Séminaire de Probabilités XLII

Author: Catherine Donati-Martin

Publisher: Springer Science & Business Media

Published: 2009-06-29

Total Pages: 457

ISBN-13: 3642017622

DOWNLOAD EBOOK

The tradition of specialized courses in the Séminaires de Probabilités is continued with A. Lejay's Another introduction to rough paths. Other topics from this 42nd volume range from the interface between analysis and probability to special processes, Lévy processes and Lévy systems, branching, penalization, representation of Gaussian processes, filtrations and quantum probability.


Pseudo-Differential Operators

Pseudo-Differential Operators

Author: Hans G. Feichtinger

Publisher: Springer

Published: 2008-08-15

Total Pages: 235

ISBN-13: 3540682686

DOWNLOAD EBOOK

Pseudo-differential operators were initiated by Kohn, Nirenberg and Hörmander in the sixties of the last century. Beside applications in the general theory of partial differential equations, they have their roots also in the study of quantization first envisaged by Hermann Weyl thirty years earlier. Thanks to the understanding of the connections of wavelets with other branches of mathematical analysis, quantum physics and engineering, such operators have been used under different names as mathematical models in signal analysis since the last decade of the last century. The volume investigates the mathematics of quantization and signals in the context of pseudo-differential operators, Weyl transforms, Daubechies operators, Wick quantization and time-frequency localization operators. Applications to quantization, signal analysis and the modern theory of PDE are highlighted.


Regularity and Approximability of Electronic Wave Functions

Regularity and Approximability of Electronic Wave Functions

Author: Harry Yserentant

Publisher: Springer

Published: 2010-05-19

Total Pages: 194

ISBN-13: 3642122485

DOWNLOAD EBOOK

The electronic Schrodi ̈ nger equation describes the motion of N electrons under Coulomb interaction forces in a eld of clamped nuclei. Solutions of this equation depend on 3N variables, three spatial dimensions for each electron. Approxim- ing the solutions is thus inordinately challenging, and it is conventionally believed that a reduction to simpli ed models, such as those of the Hartree-Fock method or density functional theory, is the only tenable approach. This book seeks to c- vince the reader that this conventional wisdom need not be ironclad: the regularity of the solutions, which increases with the number of electrons, the decay behavior of their mixed derivatives, and the antisymmetry enforced by the Pauli principle contribute properties that allow these functions to be approximated with an order of complexity which comes arbitrarily close to that for a system of one or two electrons. The present notes arose from lectures that I gave in Berlin during the academic year 2008/09 to introduce beginning graduate students of mathematics into this subject. They are kept on an intermediate level that should be accessible to an audience of this kind as well as to physicists and theoretical chemists with a c- responding mathematical training.


Generalized Bessel Functions of the First Kind

Generalized Bessel Functions of the First Kind

Author: Árpád Baricz

Publisher: Springer

Published: 2010-06-17

Total Pages: 225

ISBN-13: 3642122302

DOWNLOAD EBOOK

In this volume we study the generalized Bessel functions of the first kind by using a number of classical and new findings in complex and classical analysis. Our aim is to present interesting geometric properties and functional inequalities for these generalized Bessel functions. Moreover, we extend many known inequalities involving circular and hyperbolic functions to Bessel and modified Bessel functions.