Quantum Field Theory in Strongly Correlated Electronic Systems

Quantum Field Theory in Strongly Correlated Electronic Systems

Author: Naoto Nagaosa

Publisher: Springer

Published: 2010-12-01

Total Pages: 0

ISBN-13: 9783642085253

DOWNLOAD EBOOK

In this book the author extends the concepts introduced in his Quantum Field Theory in Condensed Matter Physics to situations in which the strong electronic correlations are crucial for the understanding of the observed phenomena. Starting from a model field theory to illustrate the basic ideas, more complex systems are analyzed in turn. A special chapter is devoted to the description of antiferromagnets, doped Mott insulators, and quantum Hall liquids from the point of view of gauge theory.


Quantum Field Theory in Strongly Correlated Electronic Systems

Quantum Field Theory in Strongly Correlated Electronic Systems

Author: Naoto Nagaosa

Publisher: Springer Science & Business Media

Published: 1999-09-20

Total Pages: 188

ISBN-13: 9783540659815

DOWNLOAD EBOOK

In this book the author extends the concepts introduced in his Quantum Field Theory in Condensed Matter Physics to situations in which the strong electronic correlations are crucial for the understanding of the observed phenomena. Starting from a model field theory to illustrate the basic ideas, more complex systems are analyzed in turn. A special chapter is devoted to the description of antiferromagnets, doped Mott insulators, and quantum Hall liquids from the point of view of gauge theory.


Strongly Correlated Systems

Strongly Correlated Systems

Author: Adolfo Avella

Publisher: Springer Science & Business Media

Published: 2013-04-05

Total Pages: 350

ISBN-13: 3642351069

DOWNLOAD EBOOK

This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.


Quantum Field Theory in Condensed Matter Physics

Quantum Field Theory in Condensed Matter Physics

Author: Naoto Nagaosa

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 213

ISBN-13: 3662037742

DOWNLOAD EBOOK

This is an approachable introduction to the important topics and recent developments in the field of condensed matter physics. First, the general language of quantum field theory is developed in a way appropriate for dealing with systems having a large number of degrees of freedom. This paves the way for a description of the basic processes in such systems. Applications include various aspects of superfluidity and superconductivity, as well as a detailed description of the fractional quantum Hall liquid.


Out-of-Equilibrium Physics of Correlated Electron Systems

Out-of-Equilibrium Physics of Correlated Electron Systems

Author: Roberta Citro

Publisher: Springer

Published: 2018-07-26

Total Pages: 199

ISBN-13: 331994956X

DOWNLOAD EBOOK

This book is a wide-ranging survey of the physics of out-of-equilibrium systems of correlated electrons, ranging from the theoretical, to the numerical, computational and experimental aspects. It starts from basic approaches to non-equilibrium physics, such as the mean-field approach, then proceeds to more advanced methods, such as dynamical mean-field theory and master equation approaches. Lastly, it offers a comprehensive overview of the latest advances in experimental investigations of complex quantum materials by means of ultrafast spectroscopy.


Theoretical Methods for Strongly Correlated Electrons

Theoretical Methods for Strongly Correlated Electrons

Author: David Sénéchal

Publisher: Springer Science & Business Media

Published: 2006-05-09

Total Pages: 370

ISBN-13: 0387217177

DOWNLOAD EBOOK

Focusing on the purely theoretical aspects of strongly correlated electrons, this volume brings together a variety of approaches to models of the Hubbard type - i.e., problems where both localized and delocalized elements are present in low dimensions. The chapters are arranged in three parts. The first part deals with two of the most widely used numerical methods in strongly correlated electrons, the density matrix renormalization group and the quantum Monte Carlo method. The second part covers Lagrangian, Functional Integral, Renormalization Group, Conformal, and Bosonization methods that can be applied to one-dimensional or weakly coupled chains. The third part considers functional derivatives, mean-field, self-consistent methods, slave-bosons, and extensions.


Electronic Structure of Strongly Correlated Materials

Electronic Structure of Strongly Correlated Materials

Author: Vladimir Anisimov

Publisher: Springer Science & Business Media

Published: 2010-07-23

Total Pages: 298

ISBN-13: 3642048269

DOWNLOAD EBOOK

Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.


Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems

Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems

Author: Igor V. Lerner

Publisher: Springer Science & Business Media

Published: 2002-07-31

Total Pages: 1200

ISBN-13: 9781402007491

DOWNLOAD EBOOK

The physics of strongly correlated fermions and bosons in a disordered envi ronment and confined geometries is at the focus of intense experimental and theoretical research efforts. Advances in material technology and in low temper ature techniques during the last few years led to the discoveries of new physical of atomic gases and a possible metal phenomena including Bose condensation insulator transition in two-dimensional high mobility electron structures. Situ ations were the electronic system is so dominated by interactions that the old concepts of a Fermi liquid do not necessarily make a good starting point are now routinely achieved. This is particularly true in the theory of low dimensional systems such as carbon nanotubes, or in two dimensional electron gases in high mobility devices where the electrons can form a variety of new structures. In many of these sys tems disorder is an unavoidable complication and lead to a host of rich physical phenomena. This has pushed the forefront of fundamental research in condensed matter towards the edge where the interplay between many-body correlations and quantum interference enhanced by disorder has become the key to the understand ing of novel phenomena.


Correlated Electrons In Quantum Matter

Correlated Electrons In Quantum Matter

Author: Peter Fulde

Publisher: World Scientific

Published: 2012-08-08

Total Pages: 550

ISBN-13: 9814397229

DOWNLOAD EBOOK

An understanding of the effects of electronic correlations in quantum systems is one of the most challenging problems in physics, partly due to the relevance in modern high technology. Yet there exist hardly any books on the subject which try to give a comprehensive overview on the field covering insulators, semiconductors, as well as metals. The present book tries to fill that gap.It intends to provide graduate students and researchers a comprehensive survey of electron correlations, weak and strong, in insulators, semiconductors and metals. This topic is a central one in condensed matter and beyond that in theoretical physics. The reader will have a better understanding of the great progress which has been made in the field over the past few decades.


Quantum Field Theory in Condensed Matter Physics

Quantum Field Theory in Condensed Matter Physics

Author: Alexei M. Tsvelik

Publisher: Cambridge University Press

Published: 2007-01-18

Total Pages: 361

ISBN-13: 1139440500

DOWNLOAD EBOOK

This book is a course in modern quantum field theory as seen through the eyes of a theorist working in condensed matter physics. It contains a gentle introduction to the subject and therefore can be used even by graduate students. The introductory parts include a derivation of the path integral representation, Feynman diagrams and elements of the theory of metals including a discussion of Landau–Fermi liquid theory. In later chapters the discussion gradually turns to more advanced methods used in the theory of strongly correlated systems. The book contains a thorough exposition of such non-perturbative techniques as 1/N-expansion, bosonization (Abelian and non-Abelian), conformal field theory and theory of integrable systems. The book is intended for graduate students, postdoctoral associates and independent researchers working in condensed matter physics.