Quantum Dynamics Simulation of Photons and Molecules

Quantum Dynamics Simulation of Photons and Molecules

Author: Arkajit Mandal

Publisher:

Published: 2021

Total Pages: 263

ISBN-13:

DOWNLOAD EBOOK

"Direct quantum dynamics simulation is often an essential tool for investigating complex chemical reactivities that involve the quantum mechanical interplay of electrons, protons, phonons, and photons. Quantum dynamics simulations can provide crucial mechanistic insights which can reveal the basic principles of new chemical reactivities, lead to new strategies for controlling or enabling chemical reactivities and help resolve mysteries in emerging fields such as polariton chemistry. One of the challenges for performing an on-the-fly quantum dynamics simulation is that it requires combining quantum dynamics methods with electronic structure approaches which are usually formulated under two different representations. While many quantum dynamics methods are developed in the diabatic representation, most of the electronic structure approaches provide outputs in the adiabatic representation. In this thesis, we have resolved this incompatibility challenge by developing the quasi-diabatic (QD) propagation scheme that allows a seamless interface between any adiabatic electronic structure method with a diabatic quantum dynamics approach. This is the first key finding in this thesis. With this new theoretical tool, we investigated proton-coupled electron transfer (PCET) reactions. We combined the instantaneous adiabatic electron-proton vibronic states, with path-integral quantum dynamics approaches using the QD propagation scheme. We found that this approach is accurate in obtaining population dynamics and provides reliable mechanistic insights of thermal as well as photoinduced PCET reactions. This is the second key finding in this thesis. With the success in simulating quantum dynamics molecular systems, we decided to investigate new chemical reactivities in light-matter hybrid systems. In particular, we investigated polariton chemistry, where new chemical reactivities are enabled by coupling molecular systems to quantized radiation in an optical cavity. We demonstrated that an isomerization reaction can be tuned by coupling molecules to radiation modes in a cavity. Using direct quantum dynamics simulations and analytical rate theories, we also demonstrated that the kinetics of photoinduced electron-transfer reaction can be suppressed or enhanced by coupling molecular system to quantized radiation in an optical cavity. This is the third key finding in this thesis. We found that the existing theoretical models for describing light-matter interactions between atoms and photons is inadequate for describing light-molecule hybrid systems. We developed the polarized-Fock state (PFS) representation for describing molecule-cavity interactions. The PFS representation provides an intuitive understanding of new phenomena and at the same time provides numerical convenience. We also discovered that the light-matter Hamiltonian in the PFS representation resolves the gauge ambiguity as it reduces to a coulomb gauge Hamiltonian that provides consistent result compared to the dipole gauge Hamiltonian under finite electronic truncation. This is the fourth key finding in this thesis. Finally, we explored vibrational polaritonic chemistry where ground-state chemical kinetics is modified when the vibrational degrees of freedom (DOF) of molecular systems are coupled to radiation modes inside an optical cavity. Such chemical kinetics modification has been demonstrated in recent experiments. However, a clear theoretical understanding of such an effect remains elusive. We found that the radiation mode can dynamically cage a solvent coordinate near the dividing surface suppressing the rate of a chemical reaction. We developed a non-Markovian rate theory for vibrational polaritonic chemistry. We extended this theory to show the same effect arises when collectively coupling radiation mode to the vibrational DOF of solvent molecules that strongly couples to a reaction coordinate. This is the final key finding in this thesis"--Pages xiii-xiv.


Molecular Quantum Dynamics

Molecular Quantum Dynamics

Author: Fabien Gatti

Publisher: Springer Science & Business Media

Published: 2014-04-09

Total Pages: 281

ISBN-13: 3642452906

DOWNLOAD EBOOK

This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book "Molecular Quantum Dynamics" offers them an accessible introduction. Although the calculation of large systems still presents a challenge - despite the considerable power of modern computers - new strategies have been developed to extend the studies to systems of increasing size. Such strategies are presented after a brief overview of the historical background. Strong emphasis is put on an educational presentation of the fundamental concepts, so that the reader can inform himself about the most important concepts, like eigenstates, wave packets, quantum mechanical resonances, entanglement, etc. The chosen examples highlight that high-level experiments and theory need to work closely together. This book thus is a must-read both for researchers working experimentally or theoretically in the concerned fields, and generally for anyone interested in the exciting world of molecular quantum dynamics.


Applications of Quantum Dynamics in Chemistry

Applications of Quantum Dynamics in Chemistry

Author: Fabien Gatti

Publisher: Springer

Published: 2018-09-09

Total Pages: 0

ISBN-13: 9783319852775

DOWNLOAD EBOOK

This book explains the usage and application of Molecular Quantum Dynamics, the methodology where both the electrons and the nuclei in a molecule are treated with quantum mechanical calculations. This volume of Lecture Notes in Chemistry addresses graduate students and postdocs in the field of theoretical chemistry, as well as postgraduate students, researchers and teachers from neighboring fields, such as quantum physics, biochemistry, biophysics, or anyone else who is interested in this rising method in theoretical chemistry, and who wants to gain experience in the opportunities it can offer. It can also be useful for teachers interested in illustrative examples of time-dependent quantum mechanics as animations of realistic wave packets have been designed to assist in visualization. Assuming a basic knowledge about quantum mechanics, the authors link their explanations to recent experimental investigations where Molecular Quantum Dynamics proved successful and necessary for the understanding of the experimental results. Examples including reactive scattering, photochemistry, tunneling, femto- and attosecond chemistry and spectroscopy, cold chemistry or crossed-beam experiments illustrate the power of the method. The book restricts complicated formalism to the necessary and in a self-contained and clearly explained way, offering the reader an introduction to, and instructions for, practical exercises. Continuative explanation and math are optionally supplemented for the interested reader. The reader learns how to apply example simulations with the MCTDH program package (Multi Configuration Time Dependent Hartree calculations). Readers can thus obtain the tools to run their own simulations and apply them to their problems. Selected scripts and program code from the examples are made available as supplementary material. This book bridges the gap between the existing textbooks on fundamental theoretical chemistry and research monographs focusing on sophisticated applications. It is a must-read for everyone who wants to gain a sound understanding of Molecular Quantum Dynamics simulations and to obtain basic experience in running their own simulations.


Manipulating Quantum Systems

Manipulating Quantum Systems

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2020-10-14

Total Pages: 315

ISBN-13: 0309499518

DOWNLOAD EBOOK

The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.


Quantum Dynamics and Laser Control for Photochemistry

Quantum Dynamics and Laser Control for Photochemistry

Author: Matthieu Sala

Publisher: Springer

Published: 2016-01-23

Total Pages: 198

ISBN-13: 3319289799

DOWNLOAD EBOOK

The central subject of this thesis is the theoretical description of ultrafast dynamical processes in molecular systems of chemical interest and their control by laser pulses. This work encompasses different cutting-edge methods in quantum chemistry, quantum dynamics and for the rigorous description of the interaction of light and matter at the molecular level. It provides a general quantum mechanical framework for the description of chemical processes guided by laser pulses, in particular near conical intersections, i.e. geometries where the nuclear and electronic motions couple and the molecule undergoes non-adiabatic (or non-Born-Oppenheimer) dynamics. In close collaboration with experimentalists, the author succeeds in making a decisive step to link and to apply quantum physics to chemistry by transferring state of the art techniques and concepts developed in physics to chemistry, such as “light dressed atoms and molecules” and “adiabatic Floquet theory”. He applies these techniques in three prototypic model systems (aniline, pyrazine and NHD2) using high-level electronic structure calculations. Readers will enjoy the comprehensive and accessible introduction to the topic and methodology, as well as the clear structure of the thesis.


Quantum Simulations with Photons and Polaritons

Quantum Simulations with Photons and Polaritons

Author: Dimitris G. Angelakis

Publisher: Springer

Published: 2017-05-03

Total Pages: 220

ISBN-13: 3319520253

DOWNLOAD EBOOK

This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative setting. This book covers some of the most important works in this area reviewing the proposal for Mott transitions and Luttinger liquid physics with light, to simulating interacting relativistic theories, topological insulators and gauge field physics. The stage of the field now is at a point where on top of the numerous theory proposals; experiments are also reported. Connecting to the theory proposals presented in the chapters, the main experimental quantum technology platforms developed from groups worldwide to realize photonic and polaritonic simulators in the laboratory are also discussed. These include coupled microwave resonator arrays in superconducting circuits, semiconductor based polariton systems, and integrated quantum photonic chips. This is the first book dedicated to photonic approaches to quantum simulation, reviewing the fundamentals for the researcher new to the field, and providing a complete reference for the graduate student starting or already undergoing PhD studies in this area.


Controlling the Quantum World

Controlling the Quantum World

Author: National Research Council

Publisher: National Academies Press

Published: 2007-06-21

Total Pages: 245

ISBN-13: 0309102707

DOWNLOAD EBOOK

As part of the Physics 2010 decadal survey project, the Department of Energy and the National Science Foundation requested that the National Research Council assess the opportunities, over roughly the next decade, in atomic, molecular, and optical (AMO) science and technology. In particular, the National Research Council was asked to cover the state of AMO science, emphasizing recent accomplishments and identifying new and compelling scientific questions. Controlling the Quantum World, discusses both the roles and challenges for AMO science in instrumentation; scientific research near absolute zero; development of extremely intense x-ray and laser sources; exploration and control of molecular processes; photonics at the nanoscale level; and development of quantum information technology. This book also offers an assessment of and recommendations about critical issues concerning maintaining U.S. leadership in AMO science and technology.


Quantum Dynamic Imaging

Quantum Dynamic Imaging

Author: Andre D Bandrauk

Publisher: Springer Science & Business Media

Published: 2011-07-12

Total Pages: 248

ISBN-13: 1441994912

DOWNLOAD EBOOK

Studying and using light or "photons" to image and then to control and transmit molecular information is among the most challenging and significant research fields to emerge in recent years. One of the fastest growing areas involves research in the temporal imaging of quantum phenomena, ranging from molecular dynamics in the femto (10-15s) time regime for atomic motion to the atto (10-18s) time scale of electron motion. In fact, the attosecond "revolution" is now recognized as one of the most important recent breakthroughs and innovations in the science of the 21st century. A major participant in the development of ultrafast femto and attosecond temporal imaging of molecular quantum phenomena has been theory and numerical simulation of the nonlinear, non-perturbative response of atoms and molecules to ultrashort laser pulses. Therefore, imaging quantum dynamics is a new frontier of science requiring advanced mathematical approaches for analyzing and solving spatial and temporal multidimensional partial differential equations such as Time-Dependent Schroedinger Equations (TDSE) and Time-Dependent Dirac equations (TDDEs for relativistic phenomena). These equations are also coupled to the photons in Maxwell's equations for collective propagation effects. Inversion of the experimental imaging data of quantum dynamics presents new mathematical challenges in the imaging of quantum wave coherences on subatomic (subnanometer) spatial dimensions and multiple timescales from atto to femto and even nanoseconds. In Quantum Dynamic Imaging: Theoretical and Numerical Methods, leading researchers discuss these exciting state-of-the-art developments and their implications for R&D in view of the promise of quantum dynamic imaging science as the essential tool for controlling matter at the molecular level.


Computational Strong-Field Quantum Dynamics

Computational Strong-Field Quantum Dynamics

Author: Dieter Bauer

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2017-04-24

Total Pages: 355

ISBN-13: 3110419343

DOWNLOAD EBOOK

This graduate textbook introduces the com-putational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach. Contents How to propagate a wavefunction? Calculation of typical strong-field observables Time-dependent relativistic wave equations: Numerics of the Dirac and the Klein-Gordon equation Time-dependent density functional theory The multiconfiguration time-dependent Hartree-Fock method Time-dependent configuration interaction singles Strong-field approximation and quantum orbits Microscopic particle-in-cell approach