The era of quantum computing is about to begin, with profound implications for the global economy and the financial system. Rapid development of quantum computing brings both benefits and risks. Quantum computers can revolutionize industries and fields that require significant computing power, including modeling financial markets, designing new effective medicines and vaccines, and empowering artificial intelligence, as well as creating a new and secure way of communication (quantum Internet). But they would also crack many of the current encryption algorithms and threaten financial stability by compromising the security of mobile banking, e-commerce, fintech, digital currencies, and Internet information exchange. While the work on quantum-safe encryption is still in progress, financial institutions should take steps now to prepare for the cryptographic transition, by assessing future and retroactive risks from quantum computers, taking an inventory of their cryptographic algorithms (especially public keys), and building cryptographic agility to improve the overall cybersecurity resilience.
Over 100 central banks around the globe are exploring central bank digital currencies (CBDCs) to modernize payment systems. They aim to explore potential benefits, risks, and the broad range of new capabilities CBDCs might offer. Some view CBDC exploration as an opportunity to rethink their existing, legacy payment systems and build a resilient and secure infrastructure using modern technologies. However, a CBDC creates a vast and complex ecosystem that amplifies existing risk exposures and surfaces new ones. Given the implications of issuing a CBDC, it should be seen as a fundamental change in the way the central bank operates. This note considers experiences from live CBDCs and is informed by experiments conducted by central banks and international institutions for domestic use. It also draws from cybersecurity and resilience frameworks from standard-setting bodies.
This volume presents papers on the topics covered at the National Academy of Engineering's 2018 US Frontiers of Engineering Symposium. Every year the symposium brings together 100 outstanding young leaders in engineering to share their cutting-edge research and innovations in selected areas. The 2018 symposium was held September 5-7 and hosted by MIT Lincoln Laboratory in Lexington, Massachusetts. The intent of this book is to convey the excitement of this unique meeting and to highlight innovative developments in engineering research and technical work.
This visionary book delves into the world-shaping abilities of modern technology, outlining the potential future transformations that it may impose. By drawing from a range of scholarly insights, Dionysios S. Demetis and Ian O. Angell explore how technology not only influences our social, economic, political, biological and physical realities, but how it can also construct completely new ones.
In our daily life, economic activities, and national security highly depend on stability, safely, and resilient cyberspace. A network brings communications and transports, power to our homes, runour economy, and provide government with various services. However it is through the same cyber networks which intrude and attack our privacy, economy, social life in a way whichis harmful. Some scholars have interestingly argued that, “in the Internet nobody knows you are a dog”. This raises some legal issues and concerns. This book presents important issues on the Security, Prevention, and Detection of Cyber Crime.
This book provides a self-contained undergraduate course on quantum computing based on classroom-tested lecture notes. It reviews the fundamentals of quantum mechanics from the double-slit experiment to entanglement, before progressing to the basics of qubits, quantum gates, quantum circuits, quantum key distribution, and some of the famous quantum algorithms. As well as covering quantum gates in depth, it also describes promising platforms for their physical implementation, along with error correction, and topological quantum computing. With quantum computing expanding rapidly in the private sector, understanding quantum computing has never been so important for graduates entering the workplace or PhD programs. Assuming minimal background knowledge, this book is highly accessible, with rigorous step-by-step explanations of the principles behind quantum computation, further reading, and end-of-chapter exercises, ensuring that undergraduate students in physics and engineering emerge well prepared for the future.
With the exponential growth of program trading in the global financial industry, quantum finance and its underlying technologies have become one of the hottest topics in the fintech community. Numerous financial institutions and fund houses around the world require computer professionals with a basic understanding of quantum finance to develop intelligent financial systems. This book presents a selection of the author’s past 15 years’ R&D work and practical implementation of the Quantum Finance Forecast System – which integrates quantum field theory and related AI technologies to design and develop intelligent global financial forecast and quantum trading systems. The book consists of two parts: Part I discusses the basic concepts and theories of quantum finance and related AI technologies, including quantum field theory, quantum price fields, quantum price level modelling and quantum entanglement to predict major financial events. Part II then examines the current, ongoing R&D projects on the application of quantum finance technologies in intelligent real-time financial prediction and quantum trading systems. This book is both a textbook for undergraduate & masters level quantum finance, AI and fintech courses and a valuable resource for researchers and data scientists working in the field of quantum finance and intelligent financial systems. It is also of interest to professional traders/ quants & independent investors who would like to grasp the basic concepts and theory of quantum finance, and more importantly how to adopt this fascinating technology to implement intelligent financial forecast and quantum trading systems. For system implementation, the interactive quantum finance programming labs listed on the Quantum Finance Forecast Centre official site (QFFC.org) enable readers to learn how to use quantum finance technologies presented in the book.
In this thesis we study device-independent quantum key distribution based on energy-time entanglement. This is a method for cryptography that promises not only perfect secrecy, but also to be a practical method for quantum key distribution thanks to the reduced complexity when compared to other quantum key distribution protocols. However, there still exist a number of loopholes that must be understood and eliminated in order to rule out eavesdroppers. We study several relevant loopholes and show how they can be used to break the security of energy-time entangled systems. Attack strategies are reviewed as well as their countermeasures, and we show how full security can be re-established. Quantum key distribution is in part based on the profound no-cloning theorem, which prevents physical states to be copied at a microscopic level. This important property of quantum mechanics can be seen as Nature's own copy-protection, and can also be used to create a currency based on quantummechanics, i.e., quantum money. Here, the traditional copy-protection mechanisms of traditional coins and banknotes can be abandoned in favor of the laws of quantum physics. Previously, quantum money assumes a traditional hierarchy where a central, trusted bank controls the economy. We show how quantum money together with a blockchain allows for Quantum Bitcoin, a novel hybrid currency that promises fast transactions, extensive scalability, and full anonymity. En viktig konsekvens av kvantmekaniken är att okända kvanttillstånd inte kan klonas. Denna insikt har gett upphov till kvantkryptering, en metod för två parter att med perfekt säkerhet kommunicera hemligheter. Ett komplett bevis för denna säkerhet har dock låtit vänta på sig eftersom en attackerare i hemlighet kan manipulera utrustningen så att den läcker information. Som ett svar på detta utvecklades apparatsoberoende kvantkryptering som i teorin är immun mot sådana attacker. Apparatsoberoende kvantkryptering har en mycket högre grad av säkerhet än vanlig kvantkryptering, men det finns fortfarande ett par luckor som en attackerare kan utnyttja. Dessa kryphål har tidigare inte tagits på allvar, men denna avhandling visar hur även små svagheter i säkerhetsmodellen läcker information till en attackerare. Vi demonstrerar en praktisk attack där attackeraren aldrig upptäcks trots att denne helt kontrollerar systemet. Vi visar också hur kryphålen kan förhindras med starkare säkerhetsbevis. En annan tillämpning av kvantmekanikens förbud mot kloning är pengar som använder detta naturens egna kopieringsskydd. Dessa kvantpengar har helt andra egenskaper än vanliga mynt, sedlar eller digitala banköverföringar. Vi visar hur man kan kombinera kvantpengar med en blockkedja, och man får då man en slags "kvant-Bitcoin". Detta nya betalningsmedel har fördelar över alla andra betalsystem, men nackdelen är att det krävs en kvantdator.