Quantization on Nilpotent Lie Groups

Quantization on Nilpotent Lie Groups

Author: Veronique Fischer

Publisher: Birkhäuser

Published: 2016-03-08

Total Pages: 568

ISBN-13: 3319295586

DOWNLOAD EBOOK

This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the analysis of Rockland operators on graded Lie groups together with their associated Sobolev spaces. For the specific example of the Heisenberg group the theory is illustrated in detail. In addition, the book features a brief account of the corresponding quantization theory in the setting of compact Lie groups. The monograph is the winner of the 2014 Ferran Sunyer i Balaguer Prize.


Quantization on Nilpotent Lie Groups

Quantization on Nilpotent Lie Groups

Author: Michael Ruzhansky

Publisher:

Published: 2020-10-08

Total Pages: 566

ISBN-13: 9781013267307

DOWNLOAD EBOOK

This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the analysis of Rockland operators on graded Lie groups together with their associated Sobolev spaces. For the specific example of the Heisenberg group the theory is illustrated in detail. In addition, the book features a brief account of the corresponding quantization theory in the setting of compact Lie groups.The monograph is the winner of the 2014 Ferran Sunyer i Balaguer Prize. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.


Representations of Solvable Lie Groups

Representations of Solvable Lie Groups

Author: Didier Arnal

Publisher: Cambridge University Press

Published: 2020-04-08

Total Pages: 464

ISBN-13: 1108651933

DOWNLOAD EBOOK

The theory of unitary group representations began with finite groups, and blossomed in the twentieth century both as a natural abstraction of classical harmonic analysis, and as a tool for understanding various physical phenomena. Combining basic theory and new results, this monograph is a fresh and self-contained exposition of group representations and harmonic analysis on solvable Lie groups. Covering a range of topics from stratification methods for linear solvable actions in a finite-dimensional vector space, to complete proofs of essential elements of Mackey theory and a unified development of the main features of the orbit method for solvable Lie groups, the authors provide both well-known and new examples, with a focus on those relevant to contemporary applications. Clear explanations of the basic theory make this an invaluable reference guide for graduate students as well as researchers.


Advances in Microlocal and Time-Frequency Analysis

Advances in Microlocal and Time-Frequency Analysis

Author: Paolo Boggiatto

Publisher: Springer Nature

Published: 2020-03-03

Total Pages: 533

ISBN-13: 3030361381

DOWNLOAD EBOOK

The present volume gathers contributions to the conference Microlocal and Time-Frequency Analysis 2018 (MLTFA18), which was held at Torino University from the 2nd to the 6th of July 2018. The event was organized in honor of Professor Luigi Rodino on the occasion of his 70th birthday. The conference’s focus and the contents of the papers reflect Luigi’s various research interests in the course of his long and extremely prolific career at Torino University.


Fourier Analysis

Fourier Analysis

Author: Michael Ruzhansky

Publisher: Springer Science & Business Media

Published: 2014-01-18

Total Pages: 416

ISBN-13: 3319025503

DOWNLOAD EBOOK

This book is devoted to the broad field of Fourier analysis and its applications to several areas of mathematics, including problems in the theory of pseudo-differential operators, partial differential equations, and time-frequency analysis. It is based on lectures given at the international conference “Fourier Analysis and Pseudo-Differential Operators,” June 25–30, 2012, at Aalto University, Finland. This collection of 20 refereed articles is based on selected talks and presents the latest advances in the field. The conference was a satellite meeting of the 6th European Congress of Mathematics, which took place in Krakow in July 2012; it was also the 6th meeting in the series “Fourier Analysis and Partial Differential Equations.”


Quantum Mathematics I

Quantum Mathematics I

Author: Michele Correggi

Publisher: Springer Nature

Published: 2023-12-01

Total Pages: 355

ISBN-13: 9819958946

DOWNLOAD EBOOK

This book is the first volume that provides an unique overview of the most recent and relevant contributions in the field of mathematical physics with a focus on the mathematical features of quantum mechanics. It is a collection of review papers together with brand new works related to the activities of the INdAM Intensive Period "INdAM Quantum Meetings (IQM22)", which took place at the Politecnico di Milano in Spring 2022 at Politecnico di Milano. The range of topics covered by the book is wide, going ranging from many-body quantum mechanics to semiclassical analysis, quantum field theory, Schrödinger and Dirac operators and open quantum systems


Operator Algebras and Operator Theory

Operator Algebras and Operator Theory

Author: Liming Ge

Publisher: American Mathematical Soc.

Published: 1998

Total Pages: 416

ISBN-13: 0821810936

DOWNLOAD EBOOK

This volume contains the proceedings from the International Conference on Operator Algebras and Operator Theory held at the East China Normal University in Shanghai (China). Participants in the conference ranged from graduate students to postdocs to leading experts who came from around the world. Topics covered were $C*$-algebras, von Neumann algebras, non-self-adjoint operator algebras, wavelets, operator spaces and other related areas. This work consists of contributions from invited speakers and some mathematicians who were unable to attend. It presents important mathematical ideas while maintaining the uniqueness and excitement of this very successful event.


Advances in Harmonic Analysis and Partial Differential Equations

Advances in Harmonic Analysis and Partial Differential Equations

Author: Vladimir Georgiev

Publisher: Springer Nature

Published: 2020-11-07

Total Pages: 319

ISBN-13: 3030582159

DOWNLOAD EBOOK

This book originates from the session "Harmonic Analysis and Partial Differential Equations" held at the 12th ISAAC Congress in Aveiro, and provides a quick overview over recent advances in partial differential equations with a particular focus on the interplay between tools from harmonic analysis, functional inequalities and variational characterisations of solutions to particular non-linear PDEs. It can serve as a useful source of information to mathematicians, scientists and engineers. The volume contains contributions of authors from a variety of countries on a wide range of active research areas covering different aspects of partial differential equations interacting with harmonic analysis and provides a state-of-the-art overview over ongoing research in the field. It shows original research in full detail allowing researchers as well as students to grasp new aspects and broaden their understanding of the area.


Geometry and Representation Theory of Real and p-adic groups

Geometry and Representation Theory of Real and p-adic groups

Author: Juan Tirao

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 330

ISBN-13: 1461241626

DOWNLOAD EBOOK

The representation theory of Lie groups plays a central role in both clas sical and recent developments in many parts of mathematics and physics. In August, 1995, the Fifth Workshop on Representation Theory of Lie Groups and its Applications took place at the Universidad Nacional de Cordoba in Argentina. Organized by Joseph Wolf, Nolan Wallach, Roberto Miatello, Juan Tirao, and Jorge Vargas, the workshop offered expository courses on current research, and individual lectures on more specialized topics. The present vol ume reflects the dual character of the workshop. Many of the articles will be accessible to graduate students and others entering the field. Here is a rough outline of the mathematical content. (The editors beg the indulgence of the readers for any lapses in this preface in the high standards of historical and mathematical accuracy that were imposed on the authors of the articles. ) Connections between flag varieties and representation theory for real re ductive groups have been studied for almost fifty years, from the work of Gelfand and Naimark on principal series representations to that of Beilinson and Bernstein on localization. The article of Wolf provides a detailed introduc tion to the analytic side of these developments. He describes the construction of standard tempered representations in terms of square-integrable partially harmonic forms (on certain real group orbits on a flag variety), and outlines the ingredients in the Plancherel formula. Finally, he describes recent work on the complex geometry of real group orbits on partial flag varieties.


Maximal Subellipticity

Maximal Subellipticity

Author: Brian Street

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2023-07-04

Total Pages: 874

ISBN-13: 3111085945

DOWNLOAD EBOOK

Maximally subelliptic partial differential equations (PDEs) are a far-reaching generalization of elliptic PDEs. Elliptic PDEs hold a special place: sharp results are known for general linear and even fully nonlinear elliptic PDEs. Over the past half-century, important results for elliptic PDEs have been generalized to maximally subelliptic PDEs. This text presents this theory and generalizes the sharp, interior regularity theory for general linear and fully nonlinear elliptic PDEs to the maximally subelliptic setting.