The Virtual Fields Method

The Virtual Fields Method

Author: Fabrice Pierron

Publisher: Springer Science & Business Media

Published: 2012-03-21

Total Pages: 531

ISBN-13: 1461418240

DOWNLOAD EBOOK

The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements is the first and only one on the Virtual Fields Method, a recent technique to identify materials mechanical properties from full-field measurements. It contains an extensive theoretical description of the method as well as numerous examples of application to a wide range of materials (composites, metals, welds, biomaterials etc.) and situations(static, vibration, high strain rate etc.). Finally, it contains a detailed training section with examples of progressive difficulty to lead the reader to program the VFM. This is accompanied with a set of commented Matlab programs as well as with a GUI Matlab based software for more general situations.


Rock Deformation from Field, Experiments and Theory

Rock Deformation from Field, Experiments and Theory

Author: D.R. Faulkner

Publisher: Geological Society of London

Published: 2015-10-26

Total Pages: 277

ISBN-13: 1862396884

DOWNLOAD EBOOK

Ernie Rutter has made, and continues to make, a significant impact in the field of rock deformation. He has studied brittle and plastic deformation processes that occur within both the oceanic and continental crust, as well as other key properties such as the permeability and seismic velocities of these rocks. His approach has been one that integrates field observations, laboratory experiments and theoretical analyses. This volume celebrates Ernie's key contribution to rock deformation and structural geology by bringing together a collection of papers that represent this broad approach. The papers within the volume address key issues that remain within these fields. These range from fundamental studies of brittle and plastic behaviour along with the resultant structures and microstructures from both the field and laboratory, to applied problems where a better understanding of the deformation and properties of the crust is still needed.


Medical Image Computing and Computer Assisted Intervention − MICCAI 2017

Medical Image Computing and Computer Assisted Intervention − MICCAI 2017

Author: Maxime Descoteaux

Publisher: Springer

Published: 2017-09-03

Total Pages: 739

ISBN-13: 3319661795

DOWNLOAD EBOOK

The three-volume set LNCS 10433, 10434, and 10435 constitutes the refereed proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017, held inQuebec City, Canada, in September 2017. The 255 revised full papers presented were carefully reviewed and selected from 800 submissions in a two-phase review process. The papers have been organized in the following topical sections: Part I: atlas and surface-based techniques; shape and patch-based techniques; registration techniques, functional imaging, connectivity, and brain parcellation; diffusion magnetic resonance imaging (dMRI) and tensor/fiber processing; and image segmentation and modelling. Part II: optical imaging; airway and vessel analysis; motion and cardiac analysis; tumor processing; planning and simulation for medical interventions; interventional imaging and navigation; and medical image computing. Part III: feature extraction and classification techniques; and machine learning in medical image computing.


Uncertainty Quantification in Multiscale Materials Modeling

Uncertainty Quantification in Multiscale Materials Modeling

Author: Yan Wang

Publisher: Woodhead Publishing

Published: 2020-03-12

Total Pages: 604

ISBN-13: 0081029411

DOWNLOAD EBOOK

Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.


Model Validation and Uncertainty Quantification, Volume 3

Model Validation and Uncertainty Quantification, Volume 3

Author: Robert Barthorpe

Publisher: Springer

Published: 2019-05-30

Total Pages: 288

ISBN-13: 3030120759

DOWNLOAD EBOOK

Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics, 2019, the third volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on: Inverse Problems and Uncertainty Quantification Controlling Uncertainty Validation of Models for Operating Environments Model Validation & Uncertainty Quantification: Decision Making Uncertainty Quantification in Structural Dynamics Uncertainty in Early Stage Design Computational and Uncertainty Quantification Tools