Quality and reliability are central to success in every discipline, but perhaps nowhere are they more important or more interconnected than in the practice of analytical chemistry. Here, although reliable analytical information implies quality, not all "quality" information proves reliable. Quality and Reliability in Analytical Chemistry examine
knowledge. This material provided has been collected from different sources. One important source is the material available from EURACHEM. Eurachem is a network of organisations in Europe having the objective of establishing a system for the international tra- ability of chemical measurements and the promotion of good quality practices. It provides a forum for the discussion of common problems and for developing an informed and considered approach to both technical and policy issues. It provides a focus for analytical chemistry and quality related issues in Europe. You can find more information about EURACHEM on the internet via “Eurachem –A Focus for Analytical Chemistry in Europe” (http://www.eurachem.org). In particular the site Guides and Documents contains a number of different guides, which might help you to set up a quality system in your laboratory. The importance of quality assurance in analytical chemistry can best be described by the triangles depicted in Figs. 1 and 2. Quality is checked by testing and testing guaranties good quality. Both contribute to progress in QA (product control and quality) and thus to establishing a market share. Market success depends on quality, price, and flexibility. All three of them are interconnected. Before you can analyse anything the sample must be taken by someone. This must be of major concern to any analytical chemist. There is no accurate analysis wi- out proper sampling. For correct sampling you need a clear problem definition. There is no correct sampling without a clear problem definition
The issue of quality assurance in the analytical chemistry laboratory has become of great importance in recent years. Quality Assurance in Analytical Chemistry introduces the reader to the whole concept of quality assurance. It discusses how all aspects of chemical analysis, from sampling and method selection to choice of equipment and the taking and reporting of measurements affect the quality of analytical data. Finally, the implementation and use of quality systems are covered.
This is the first book to show how to apply the principles of quality assurance to the identification of analytes (qualitative chemical analysis). After presenting the principles of identification and metrological basics, the author focuses on the reliability and the errors of chemical identification. This is then applied to practical examples such as EPA methods, EU, FDA, or WADA regulations. Two whole chapters are devoted to the analysis of unknowns and identification of samples such as foodstuffs or oil pollutions. Essential reading for researchers and professionals dealing with the identification of chemical compounds and the reliability of chemical analysis.
This book provides practical information about quality assurance/quality control (QA/QC) systems, including definition of all tools, understanding of their uses, and an increase in knowledge about the practical application of statistical tools during analytical data treatment. Clearly written and logically organized, this book delineates the concepts of practical QA/QC, taking a generic approach that can be applied to any field of analysis. Using an approach grounded in hands-on experience, the book begins with the theory behind quality control systems and then moves on to discuss examples of tools such as validation parameter measurements, the use of statistical tests, counting the margin of error, and estimating uncertainty. The second edition features newly added chapters covering changes in the regulatory environment, internal quality-control and equivalence method. Over 80 examples are featured in this new edition, including Excel spreadsheets for users to problem solve. Quality Assurance and Quality Control in the Analytical Chemistry Laboratory: A Practical Approach, Second Edition is a great reference for students, laboratory employees, and academics working in the fields of analytical chemistry, pharmaceuticals, or life sciences. With its comprehensive coverage, this book can be of interest to researchers in the industry and academic, as well as government agencies and legislative bodies. Book jacket.
Fit-for-purpose is a phrase familiar to all users of analytical data, who need to be assured that data provided by laboratories is both appropriate and of the required quality. Quality in the Food Analysis Laboratory surveys the procedures that a food analysis laboratory must consider to meet such requirements. The need to introduce quality assurance, the different quality models that are available and the legislative requirements are considered. Specific aspects of laboratory practice and particular areas of accreditation which may cause problems for analytical laboratories are also discussed. Covering for the first time those areas of direct importance to food analysis laboratories, this unique book will serve as an aid to those laboratories when introducing new measures and justifying those chosen.
This definitive new book should appeal to everyone who produces, uses, or evaluates scientific data. Ensures accuracy and reliability. Dr. Taylor's book provides guidance for the development and implementation of a credible quality assurance program, plus it also provides chemists and clinical chemists, medical and chemical researchers, and all scientists and managers the ideal means to ensure accurate and reliable work. Chapters are presented in a logical progression, starting with the concept of quality assurance, principles of good measurement, principles of quality assurance, and evaluation of measurement quality. Each chapter has a degree of independence so that it may be consulted separately from the others.
Under the guidance of the German Federal Institute for Materials Research (BAM), the standards for fabrication and application of reference materials are presented here in comprehensive form. The areas covered are analytical chemistry, materials science, environmental analysis, clinical and forensic toxicological analysis, and gas and food analysis. A standard reference for every analytical laboratory.
This definitive new book should appeal to everyone who produces, uses, or evaluates scientific data. Ensures accuracy and reliability. Dr. Taylor's book provides guidance for the development and implementation of a credible quality assurance program, plus it also provides chemists and clinical chemists, medical and chemical researchers, and all scientists and managers the ideal means to ensure accurate and reliable work. Chapters are presented in a logical progression, starting with the concept of quality assurance, principles of good measurement, principles of quality assurance, and evaluation of measurement quality. Each chapter has a degree of independence so that it may be consulted separately from the others.
The book explains the principles and fundamentals of Green Analytical Chemistry (GAC) and highlights the current developments and future potential of the analytical green chemistry-oriented applications of various solutions. The book consists of sixteen chapters, including the history and milestones of GAC; issues related to teaching of green analytical chemistry and greening the university laboratories; evaluation of impact of analytical activities on the environmental and human health, direct techniques of detection, identification and determination of trace constituents; new achievements in the field of extraction of trace analytes from samples characterized by complex composition of the matrix; “green” nature of the derivatization process in analytical chemistry; passive techniques of sampling of analytes; green sorption materials used in analytical procedures; new types of solvents in the field of analytical chemistry. In addition green chromatography and related techniques, fast tests for assessment of the wide spectrum of pollutants in the different types of the medium, remote monitoring of environmental pollutants, qualitative and comparative evaluation, quantitative assessment, and future trends and perspectives are discussed. This book appeals to a wide readership of the academic and industrial researchers. In addition, it can be used in the classroom for undergraduate and graduate Ph.D. students focusing on elaboration of new analytical procedures for organic and inorganic compounds determination in different kinds of samples characterized by complex matrices composition.Jacek Namieśnik was a Professor at the Department of Analytical Chemistry, Gdańsk University of Technology, Poland. Justyna Płotka-Wasylka is a teacher and researcher at the same department.