Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle

Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle

Author: Moussa Labbadi

Publisher: Springer Nature

Published: 2021-09-14

Total Pages: 263

ISBN-13: 3030810143

DOWNLOAD EBOOK

This book studies selected advanced flight control schemes for an uncertain quadrotor unmanned aerial vehicle (UAV) systems in the presence of constant external disturbances, parametric uncertainties, measurement noise, time-varying external disturbances, and random external disturbances. Furthermore, in all the control techniques proposed in this book, it includes the simulation results with comparison to other nonlinear control schemes recently developed for the tracking control of a quadrotor UAV. The main contributions of the present book for quadrotor UAV systems are as follows: (i) the proposed control methods are based on the high-order sliding mode controller (SMC) and hybrid control algorithm with an optimization method. (ii) the finite-time control schemes are developed by using fast terminal SMC (FTSMC), nonsingular FTSMC (NFTSMC), global time-varying SMC, and adaptive laws. (iii) the fractional-order flight control schemes are developed by using the fractional-order calculus theory, super twisting algorithm, NFTSMC, and the SMC. This book covers the research history and importance of quadrotor system subject to system uncertainties, external wind disturbances, and noise measurements, as well as the research status of advanced flight control methods, adaptive flight control methods, and flight control based on fractional-order theory. The book would be interesting to most academic undergraduate, postgraduates, researchers on flight control for drones and applications of advanced controllers in engineering field. This book presents a must-survey for advanced finite-time control for quadrotor system. Some parts of this book have the potential of becoming the courses for the modelling and control of autonomous flying machines. Readers (academic researcher, undergraduate student, postgraduate student, MBA/executive, and education practitioner) interested in nonlinear control methods find this book an investigation. This book can be used as a good reference for the academic research on the control theory, drones, terminal sliding mode control, and related to this or used in Ph.D. study of control theory and their application in field engineering.


Quadrotor Unmanned Aerial Vehicle (UAV)

Quadrotor Unmanned Aerial Vehicle (UAV)

Author: Osama Pervez

Publisher: GRIN Verlag

Published: 2014-05-28

Total Pages: 59

ISBN-13: 3656660999

DOWNLOAD EBOOK

Project Report from the year 2008 in the subject Instructor Plans: Craft / Production / Trade - Electronics Engineering, grade: 90, Sir Syed University Of Engineering & Technology, language: English, abstract: Quad rotor helicopters have become increasingly important in recent years as platforms for both research and commercial unmanned aerial vehicle applications. This progress report explains work on several important aerodynamic effects. These vehicles have 4 identical rotors in 2 pairs spinning in opposite directions, and possess many advantages over standard helicopters in terms of safety and efficiency at small sizes.


Simulation, Modeling, and Programming for Autonomous Robots

Simulation, Modeling, and Programming for Autonomous Robots

Author: Itsuki Noda

Publisher: Springer

Published: 2012-10-20

Total Pages: 425

ISBN-13: 3642343279

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Third International Conference on Simulation, Modeling, and Programming for Autonomous Robots, SIMPAR 2012, held in Tsukuba, Japan, in November 2012. The 33 revised full papers and presented together with 3 invited talks were carefully reviewed and selected from 46 submissions. Ten papers describe design of complex behaviors of autonomous robots, 9 address software layers, 8 papers refer to related modeling and learning. The papers are organized in topical sections on mobile robots, software modeling and architecture and humanoid and biped robots.


Unmanned Aerial Vehicles: Breakthroughs in Research and Practice

Unmanned Aerial Vehicles: Breakthroughs in Research and Practice

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2019-05-03

Total Pages: 581

ISBN-13: 1522583661

DOWNLOAD EBOOK

First used in military applications, unmanned aerial vehicles are becoming an integral aspect of modern society and are expanding into the commercial, scientific, recreational, agricultural, and surveillance sectors. With the increasing use of these drones by government officials, business professionals, and civilians, more research is needed to understand their complexity both in design and function. Unmanned Aerial Vehicles: Breakthroughs in Research and Practice is a critical source of academic knowledge on the design, construction, and maintenance of drones, as well as their applications across all aspects of society. Highlighting a range of pertinent topics such as intelligent systems, artificial intelligence, and situation awareness, this publication is an ideal reference source for military consultants, military personnel, business professionals, operation managers, surveillance companies, agriculturalists, policymakers, government officials, law enforcement, IT professionals, academicians, researchers, and graduate-level students.


Autonomous Control of Unmanned Aerial Vehicles

Autonomous Control of Unmanned Aerial Vehicles

Author: Victor Becerra

Publisher: MDPI

Published: 2019-06-24

Total Pages: 476

ISBN-13: 3039210300

DOWNLOAD EBOOK

Unmanned aerial vehicles (UAVs) are being increasingly used in different applications in both military and civilian domains. These applications include surveillance, reconnaissance, remote sensing, target acquisition, border patrol, infrastructure monitoring, aerial imaging, industrial inspection, and emergency medical aid. Vehicles that can be considered autonomous must be able to make decisions and react to events without direct intervention by humans. Although some UAVs are able to perform increasingly complex autonomous manoeuvres, most UAVs are not fully autonomous; instead, they are mostly operated remotely by humans. To make UAVs fully autonomous, many technological and algorithmic developments are still required. For instance, UAVs will need to improve their sensing of obstacles and subsequent avoidance. This becomes particularly important as autonomous UAVs start to operate in civilian airspaces that are occupied by other aircraft. The aim of this volume is to bring together the work of leading researchers and practitioners in the field of unmanned aerial vehicles with a common interest in their autonomy. The contributions that are part of this volume present key challenges associated with the autonomous control of unmanned aerial vehicles, and propose solution methodologies to address such challenges, analyse the proposed methodologies, and evaluate their performance.


Advances in Unmanned Aerial Vehicles

Advances in Unmanned Aerial Vehicles

Author: Kimon P. Valavanis

Publisher: Springer Science & Business Media

Published: 2008-02-26

Total Pages: 552

ISBN-13: 1402061145

DOWNLOAD EBOOK

The past decade has seen tremendous interest in the production and refinement of unmanned aerial vehicles, both fixed-wing, such as airplanes and rotary-wing, such as helicopters and vertical takeoff and landing vehicles. This book provides a diversified survey of research and development on small and miniature unmanned aerial vehicles of both fixed and rotary wing designs. From historical background to proposed new applications, this is the most comprehensive reference yet.


Small Unmanned Aircraft

Small Unmanned Aircraft

Author: Randal W. Beard

Publisher: Princeton University Press

Published: 2012-02-26

Total Pages: 317

ISBN-13: 1400840600

DOWNLOAD EBOOK

Autonomous unmanned air vehicles (UAVs) are critical to current and future military, civil, and commercial operations. Despite their importance, no previous textbook has accessibly introduced UAVs to students in the engineering, computer, and science disciplines--until now. Small Unmanned Aircraft provides a concise but comprehensive description of the key concepts and technologies underlying the dynamics, control, and guidance of fixed-wing unmanned aircraft, and enables all students with an introductory-level background in controls or robotics to enter this exciting and important area. The authors explore the essential underlying physics and sensors of UAV problems, including low-level autopilot for stability and higher-level autopilot functions of path planning. The textbook leads the student from rigid-body dynamics through aerodynamics, stability augmentation, and state estimation using onboard sensors, to maneuvering through obstacles. To facilitate understanding, the authors have replaced traditional homework assignments with a simulation project using the MATLAB/Simulink environment. Students begin by modeling rigid-body dynamics, then add aerodynamics and sensor models. They develop low-level autopilot code, extended Kalman filters for state estimation, path-following routines, and high-level path-planning algorithms. The final chapter of the book focuses on UAV guidance using machine vision. Designed for advanced undergraduate or graduate students in engineering or the sciences, this book offers a bridge to the aerodynamics and control of UAV flight.


2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)

2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)

Author: IEEE Staff

Publisher:

Published: 2018-08-10

Total Pages:

ISBN-13: 9781538611722

DOWNLOAD EBOOK

Topics of interests are in the broad areas of GNC, including but not limited to Control Theory and Analysis Intelligent Computing, Communication and Control New Methods of Navigation, Estimation and Tracking Navigation, Guidance and Control of Aircraft Navigation, Guidance and Control of Other Moving Objects Control of Multiple Moving Objects Man and Autonomous Unmanned Systems Guidance, Navigation and Control of Miniature Aircraft Sensor Systems for Guidance, Navigation and Control Advanced Design Simulation Software


Modelling and Control of Mini-Flying Machines

Modelling and Control of Mini-Flying Machines

Author: Pedro Castillo Garcia

Publisher: Springer Science & Business Media

Published: 2005-12-08

Total Pages: 260

ISBN-13: 1846281792

DOWNLOAD EBOOK

Modelling and Control of Mini-Flying Machines is an exposition of models developed to assist in the motion control of various types of mini-aircraft: • Planar Vertical Take-off and Landing aircraft; • helicopters; • quadrotor mini-rotorcraft; • other fixed-wing aircraft; • blimps. For each of these it propounds: • detailed models derived from Euler-Lagrange methods; • appropriate nonlinear control strategies and convergence properties; • real-time experimental comparisons of the performance of control algorithms; • review of the principal sensors, on-board electronics, real-time architecture and communications systems for mini-flying machine control, including discussion of their performance; • detailed explanation of the use of the Kalman filter to flying machine localization. To researchers and students in nonlinear control and its applications Modelling and Control of Mini-Flying Machines provides valuable insights to the application of real-time nonlinear techniques in an always challenging area.


Advanced UAV Aerodynamics, Flight Stability and Control

Advanced UAV Aerodynamics, Flight Stability and Control

Author: Pascual Marqués

Publisher: John Wiley & Sons

Published: 2017-07-11

Total Pages: 799

ISBN-13: 1118928687

DOWNLOAD EBOOK

Comprehensively covers emerging aerospace technologies Advanced UAV aerodynamics, flight stability and control: Novel concepts, theory and applications presents emerging aerospace technologies in the rapidly growing field of unmanned aircraft engineering. Leading scientists, researchers and inventors describe the findings and innovations accomplished in current research programs and industry applications throughout the world. Topics included cover a wide range of new aerodynamics concepts and their applications for real world fixed-wing (airplanes), rotary wing (helicopter) and quad-rotor aircraft. The book begins with two introductory chapters that address fundamental principles of aerodynamics and flight stability and form a knowledge base for the student of Aerospace Engineering. The book then covers aerodynamics of fixed wing, rotary wing and hybrid unmanned aircraft, before introducing aspects of aircraft flight stability and control. Key features: Sound technical level and inclusion of high-quality experimental and numerical data. Direct application of the aerodynamic technologies and flight stability and control principles described in the book in the development of real-world novel unmanned aircraft concepts. Written by world-class academics, engineers, researchers and inventors from prestigious institutions and industry. The book provides up-to-date information in the field of Aerospace Engineering for university students and lecturers, aerodynamics researchers, aerospace engineers, aircraft designers and manufacturers.