These four volumes present innovative thematic applications implemented using the open source software QGIS. These are applications that use remote sensing over continental surfaces. The volumes detail applications of remote sensing over continental surfaces, with a first one discussing applications for agriculture. A second one presents applications for forest, a third presents applications for the continental hydrology, and finally the last volume details applications for environment and risk issues.
These four volumes present innovative thematic applications implemented using the open source software QGIS. These are applications that use remote sensing over continental surfaces. The volumes detail applications of remote sensing over continental surfaces, with a first one discussing applications for agriculture. A second one presents applications for forest, a third presents applications for the continental hydrology, and finally the last volume details applications for environment and risk issues.
Our four volumes propose to present innovative thematic applications implemented using the open source software QGIS. These are applications that use remote sensing over continental surfaces. The four volumes detail applications of remote sensing over continental surfaces, with a first one discussing applications for agriculture. A second one presents applications for forest, a third presents applications for the continental hydrology, and finally the last volume details applications for environment and risk issues.
Master over 170 recipes that will help you turn QGIS from a desktop GIS tool into a powerful automated geospatial framework About This Book Delve into the undocumented features of the QGIS API Get a set of user-friendly recipes that can automate entire geospatial workflows by connecting Python GIS building blocks into comprehensive processes This book has a complete code upgrade to QGIS 2.18 and 30 new, valuable recipes Who This Book Is For This book is for geospatial analysts who want to learn more about automating everyday GIS tasks as well as programmers responsible for building GIS applications. The short, reusable recipes make concepts easy to understand and combine so you can build larger applications that are easy to maintain. What You Will Learn Use Python and QGIS to produce captivating GIS visualizations and build complex map layouts Find out how to effectively use the poorly-documented and undocumented features of the QGIS Python API Automate entire geospatial workflows by connecting Python GIS building blocks into comprehensive processes Create, import, and edit geospatial data on disk or in-memory Change QGIS settings programmatically to control default behavior Automatically generate PDF map books Build dynamic forms for field input In Detail QGIS is a desktop geographic information system that facilitates data viewing, editing, and analysis. Paired with the most efficient scripting language—Python, we can write effective scripts that extend the core functionality of QGIS. Based on version QGIS 2.18, this book will teach you how to write Python code that works with spatial data to automate geoprocessing tasks in QGIS. It will cover topics such as querying and editing vector data and using raster data. You will also learn to create, edit, and optimize a vector layer for faster queries, reproject a vector layer, reduce the number of vertices in a vector layer without losing critical data, and convert a raster to a vector. Following this, you will work through recipes that will help you compose static maps, create heavily customized maps, and add specialized labels and annotations. As well as this, we'll also share a few tips and tricks based on different aspects of QGIS. Style and approach This book follows a recipe-based problem-solution approach to address and dispel challenges faced when implementing and using QGIS on a regular basis.
The latest guide to using QGIS 2.14 to create great maps and perform geoprocessing tasks with ease About This Book Learn how to work with various data and create beautiful maps using this easy-to-follow guide. Give a touch of professionalism to your maps both for functionality and look and feel with the help of this practical guide. A progressive hands-on guide that builds on a geo-spatial data and adds more reactive maps by using geometry tools. Who This Book Is For This book is great for users, developers, and consultants who know the basic functions and processes of GIS and want to learn to use QGIS to analyze geospatial data and create rich mapping applications. If you want to take advantage of the wide range of functionalities that QGIS offers, then this is the book for you. What You Will Learn Install QGIS and get familiar with the user interface Load vector and raster data from files, databases, and web services Create, visualize, and edit spatial data Perform geoprocessing tasks and automate them Create advanced cartographic outputs Design great print maps Expand QGIS using Python In Detail QGIS is a user-friendly open source geographic information system (GIS) that runs on Linux, Unix, Mac OS X, and Windows. The popularity of open source geographic information systems and QGIS in particular has been growing rapidly over the last few years. Learning QGIS Third Edition is a practical, hands-on guide updated for QGIS 2.14 that provides you with clear, step-by-step exercises to help you apply your GIS knowledge to QGIS. Through clear, practical exercises, this book will introduce you to working with QGIS quickly and painlessly. This book takes you from installing and configuring QGIS to handling spatial data to creating great maps. You will learn how to load and visualize existing spatial data and create data from scratch. You will get to know important plugins, perform common geoprocessing and spatial analysis tasks and automate them with Processing. We will cover how to achieve great cartographic output and print maps. Finally, you will learn how to extend QGIS using Python and even create your own plugin. Style and approach A step by step approach to explain concepts of Geospatial map with the help of real life examples
In today’s world, deep learning source codes and a plethora of open access geospatial images are readily available and easily accessible. However, most people are missing the educational tools to make use of this resource. Deep Learning for Remote Sensing Images with Open Source Software is the first practical book to introduce deep learning techniques using free open source tools for processing real world remote sensing images. The approaches detailed in this book are generic and can be adapted to suit many different applications for remote sensing image processing, including landcover mapping, forestry, urban studies, disaster mapping, image restoration, etc. Written with practitioners and students in mind, this book helps link together the theory and practical use of existing tools and data to apply deep learning techniques on remote sensing images and data. Specific Features of this Book: The first book that explains how to apply deep learning techniques to public, free available data (Spot-7 and Sentinel-2 images, OpenStreetMap vector data), using open source software (QGIS, Orfeo ToolBox, TensorFlow) Presents approaches suited for real world images and data targeting large scale processing and GIS applications Introduces state of the art deep learning architecture families that can be applied to remote sensing world, mainly for landcover mapping, but also for generic approaches (e.g. image restoration) Suited for deep learning beginners and readers with some GIS knowledge. No coding knowledge is required to learn practical skills. Includes deep learning techniques through many step by step remote sensing data processing exercises.
Geocomputation with R is for people who want to analyze, visualize and model geographic data with open source software. It is based on R, a statistical programming language that has powerful data processing, visualization, and geospatial capabilities. The book equips you with the knowledge and skills to tackle a wide range of issues manifested in geographic data, including those with scientific, societal, and environmental implications. This book will interest people from many backgrounds, especially Geographic Information Systems (GIS) users interested in applying their domain-specific knowledge in a powerful open source language for data science, and R users interested in extending their skills to handle spatial data. The book is divided into three parts: (I) Foundations, aimed at getting you up-to-speed with geographic data in R, (II) extensions, which covers advanced techniques, and (III) applications to real-world problems. The chapters cover progressively more advanced topics, with early chapters providing strong foundations on which the later chapters build. Part I describes the nature of spatial datasets in R and methods for manipulating them. It also covers geographic data import/export and transforming coordinate reference systems. Part II represents methods that build on these foundations. It covers advanced map making (including web mapping), "bridges" to GIS, sharing reproducible code, and how to do cross-validation in the presence of spatial autocorrelation. Part III applies the knowledge gained to tackle real-world problems, including representing and modeling transport systems, finding optimal locations for stores or services, and ecological modeling. Exercises at the end of each chapter give you the skills needed to tackle a range of geospatial problems. Solutions for each chapter and supplementary materials providing extended examples are available at https://geocompr.github.io/geocompkg/articles/. Dr. Robin Lovelace is a University Academic Fellow at the University of Leeds, where he has taught R for geographic research over many years, with a focus on transport systems. Dr. Jakub Nowosad is an Assistant Professor in the Department of Geoinformation at the Adam Mickiewicz University in Poznan, where his focus is on the analysis of large datasets to understand environmental processes. Dr. Jannes Muenchow is a Postdoctoral Researcher in the GIScience Department at the University of Jena, where he develops and teaches a range of geographic methods, with a focus on ecological modeling, statistical geocomputing, and predictive mapping. All three are active developers and work on a number of R packages, including stplanr, sabre, and RQGIS.
This book offers a comprehensive review of smart technologies and provides perspectives on their applications in urban engineering. It covers a wide range of applications, from manufacturing engineering and transport logistics to information and computation technologies, providing readers with fresh ideas for future research and collaborations. The book showcases selected papers from the International Conference on Smart Technologies in Urban Engineering (STUE-2023), hosted by O.M. Beketov National University of Urban Economy in Kharkiv, Ukraine. The conference, held on June 8–10, 2023, aimed to address the complex rehabilitation of areas damaged by military conflicts and natural disasters. The contributions within this book offer a wealth of valuable information, fostering a meaningful exchange of experiences among scientists in the field of urban engineering. By delving into this book, readers explore innovative approaches to tackle urban challenges, gain insights from experts, and contribute to the advancement of smart technologies for the betterment of cities worldwide.
One third of the world's soils have already been degraded. The burden on the land continues to grow under the combined pressures of demography, urbanization, artificialization and mining, and there are increased demands on agricultural land: changing dietary preferences, land speculation, as well as new demands for agroenergy, fiber, green chemistry, and more. Resulting issues such as soil crusting, water and wind erosion, soil salinization and soil acidity therefore constitute a major threat. The authors of this book present the main processes and factors of soil degradation, different ways to prevent it and methods of rehabilitation. The book also deals with the origin and processes of metallic and organic soil pollution as well as methods of phytoremediation and restoration. It is one of the few books to explore the issue of soil artificialization and urban soil management and to highlight how agricultural and urban waste can be used to amend and fertilize cultivated soils.
This introductory book to the six volume series includes an introduction defining the critical zone for mankind that extends from tree canopy and the lower atmosphere to water table and unweathered rock. Soils play a crucial role through the functions and the services that they provide to mankind. The spatial and temporal variability of soils is represented by information systems whose importance, recent evolutions and increasingly performing applications in France and in the world must be underlined. The soil functions, discussed in this book, focus on the regulation of the water cycle, biophysicochemical cycles and the habitat role of biodiversity. The main services presented are those related to the provision of agricultural, fodder and forest products, energy, as well as materials and the role of soil as infrastructure support. They also include the different cultural dimensions of soils, their representations being often linked to myths and rites, as well as their values of environmental and archaeological records. Finally, the issue is raised of an off-ground world.