Analysis In Euclidean Space

Analysis In Euclidean Space

Author: Joaquim Bruna

Publisher: World Scientific

Published: 2022-10-04

Total Pages: 579

ISBN-13: 1800611730

DOWNLOAD EBOOK

Based on notes written during the author's many years of teaching, Analysis in Euclidean Space mainly covers Differentiation and Integration theory in several real variables, but also an array of closely related areas including measure theory, differential geometry, classical theory of curves, geometric measure theory, integral geometry, and others.With several original results, new approaches and an emphasis on concepts and rigorous proofs, the book is suitable for undergraduate students, particularly in mathematics and physics, who are interested in acquiring a solid footing in analysis and expanding their background. There are many examples and exercises inserted in the text for the student to work through independently.Analysis in Euclidean Space comprises 21 chapters, each with an introduction summarizing its contents, and an additional chapter containing miscellaneous exercises. Lecturers may use the varied chapters of this book for different undergraduate courses in analysis. The only prerequisites are a basic course in linear algebra and a standard first-year calculus course in differentiation and integration. As the book progresses, the difficulty increases such that some of the later sections may be appropriate for graduate study.


Calculus and Analysis in Euclidean Space

Calculus and Analysis in Euclidean Space

Author: Jerry Shurman

Publisher: Springer

Published: 2016-11-26

Total Pages: 515

ISBN-13: 3319493140

DOWNLOAD EBOOK

The graceful role of analysis in underpinning calculus is often lost to their separation in the curriculum. This book entwines the two subjects, providing a conceptual approach to multivariable calculus closely supported by the structure and reasoning of analysis. The setting is Euclidean space, with the material on differentiation culminating in the inverse and implicit function theorems, and the material on integration culminating in the general fundamental theorem of integral calculus. More in-depth than most calculus books but less technical than a typical analysis introduction, Calculus and Analysis in Euclidean Space offers a rich blend of content to students outside the traditional mathematics major, while also providing transitional preparation for those who will continue on in the subject. The writing in this book aims to convey the intent of ideas early in discussion. The narrative proceeds through figures, formulas, and text, guiding the reader to do mathematics resourcefully by marshaling the skills of geometric intuition (the visual cortex being quickly instinctive) algebraic manipulation (symbol-patterns being precise and robust) incisive use of natural language (slogans that encapsulate central ideas enabling a large-scale grasp of the subject). Thinking in these ways renders mathematics coherent, inevitable, and fluid. The prerequisite is single-variable calculus, including familiarity with the foundational theorems and some experience with proofs.


Analysis of Spherical Symmetries in Euclidean Spaces

Analysis of Spherical Symmetries in Euclidean Spaces

Author: Claus Müller

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 227

ISBN-13: 1461205816

DOWNLOAD EBOOK

This self-contained book offers a new and direct approach to the theories of special functions with emphasis on spherical symmetry in Euclidean spaces of arbitrary dimensions. Based on many years of lecturing to mathematicians, physicists and engineers in scientific research institutions in Europe and the USA, the author uses elementary concepts to present the spherical harmonics in a theory of invariants of the orthogonal group. One of the highlights is the extension of the classical results of the spherical harmonics into the complex - particularly important for the complexification of the Funk-Hecke formula which successfully leads to new integrals for Bessel- and Hankel functions with many applications of Fourier integrals and Radon transforms. Numerous exercises stimulate mathematical ingenuity and bridge the gap between well-known elementary results and their appearance in the new formations.


Harmonic Analysis in Euclidean Spaces, Part 2

Harmonic Analysis in Euclidean Spaces, Part 2

Author: Guido Weiss

Publisher: American Mathematical Soc.

Published: 1979

Total Pages: 448

ISBN-13: 0821814389

DOWNLOAD EBOOK

Contains sections on Several complex variables, Pseudo differential operators and partial differential equations, Harmonic analysis in other settings: probability, martingales, local fields, and Lie groups and functional analysis.


Analysis of Symbolic Data

Analysis of Symbolic Data

Author: Hans-Hermann Bock

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 444

ISBN-13: 3642571557

DOWNLOAD EBOOK

This book presents the most recent methods for analyzing and visualizing symbolic data. It generalizes classical methods of exploratory, statistical and graphical data analysis to the case of complex data. Several benchmark examples from National Statistical Offices illustrate the usefulness of the methods. The book contains an extensive bibliography and a subject index.


More Progresses in Analysis

More Progresses in Analysis

Author:

Publisher: World Scientific

Published: 2009-05-12

Total Pages: 1497

ISBN-13: 9812835636

DOWNLOAD EBOOK

International ISAAC (International Society for Analysis, its Applications and Computation) Congresses have been held every second year since 1997. The proceedings report on a regular basis on the progresses of the field in recent years, where the most active areas in analysis, its applications and computation are covered. Plenary lectures also highlight recent results. This volume concentrates mainly on partial differential equations, but also includes function spaces, operator theory, integral transforms and equations, potential theory, complex analysis and generalizations, stochastic analysis, inverse problems, homogenization, continuum mechanics, mathematical biology and medicine. With over 350 participants attending the congress, the book comprises 140 papers from 211 authors. The volume also serves for transferring personal information about the ISAAC and its members. This volume includes citations for O. Besov, V. Burenkov and R.P. Gilbert on the occasion of their anniversaries.


The Theory of Best Approximation and Functional Analysis

The Theory of Best Approximation and Functional Analysis

Author: Ivan Singer

Publisher: SIAM

Published: 1974-01-01

Total Pages: 102

ISBN-13: 9781611970548

DOWNLOAD EBOOK

Results and problems in the modern theory of best approximation, in which the methods of functional analysis are applied in a consequent manner. This modern theory constitutes both a unified foundation for the classical theory of best approximation and a powerful tool for obtaining new results.


More Progresses In Analysis - Proceedings Of The 5th International Isaac Congress

More Progresses In Analysis - Proceedings Of The 5th International Isaac Congress

Author: Heinrich G W Begehr

Publisher: World Scientific

Published: 2009-05-12

Total Pages: 1497

ISBN-13: 9814469688

DOWNLOAD EBOOK

International ISAAC (International Society for Analysis, its Applications and Computation) Congresses have been held every second year since 1997. The proceedings report on a regular basis on the progresses of the field in recent years, where the most active areas in analysis, its applications and computation are covered. Plenary lectures also highlight recent results. This volume concentrates mainly on partial differential equations, but also includes function spaces, operator theory, integral transforms and equations, potential theory, complex analysis and generalizations, stochastic analysis, inverse problems, homogenization, continuum mechanics, mathematical biology and medicine. With over 350 participants attending the congress, the book comprises 140 papers from 211 authors.The volume also serves for transferring personal information about the ISAAC and its members. This volume includes citations for O Besov, V Burenkov and R P Gilbert on the occasion of their anniversaries.


Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces

Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces

Author: Pascal Auscher

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 434

ISBN-13: 0821833839

DOWNLOAD EBOOK

This volume contains the expanded lecture notes of courses taught at the Emile Borel Centre of the Henri Poincare Institute (Paris). In the book, leading experts introduce recent research in their fields. The unifying theme is the study of heat kernels in various situations using related geometric and analytic tools. Topics include analysis of complex-coefficient elliptic operators, diffusions on fractals and on infinite-dimensional groups, heat kernel and isoperimetry on Riemannian manifolds, heat kernels and infinite dimensional analysis, diffusions and Sobolev-type spaces on metric spaces, quasi-regular mappings and $p$-Laplace operators, heat kernel and spherical inversion on $SL 2(C)$, random walks and spectral geometry on crystal lattices, isoperimetric and isocapacitary inequalities, and generating function techniques for random walks on graphs. This volume is suitable for graduate students and research mathematicians interested in random processes and analysis on manifolds.


Clifford Algebras and Dirac Operators in Harmonic Analysis

Clifford Algebras and Dirac Operators in Harmonic Analysis

Author: John E. Gilbert

Publisher: Cambridge University Press

Published: 1991-07-26

Total Pages: 346

ISBN-13: 9780521346542

DOWNLOAD EBOOK

The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds, and harmonic analysis. The authors show how algebra, geometry, and differential equations play a more fundamental role in Euclidean Fourier analysis. They then link their presentation of the Euclidean theory naturally to the representation theory of semi-simple Lie groups.