PyTorch Computer Vision Cookbook
Author: Michael Avendi
Publisher:
Published: 2020-03-20
Total Pages: 364
ISBN-13: 9781838644833
DOWNLOAD EBOOKDiscover powerful ways to use deep learning algorithms and solve real-world computer vision problems using Python Key Features Solve the trickiest of problems in computer vision by combining the power of deep learning and neural networks Leverage PyTorch 1.x capabilities to perform image classification, object detection, and more Train and deploy enterprise-grade, deep learning models for computer vision applications Book Description Computer vision techniques play an integral role in helping developers gain a high-level understanding of digital images and videos. With this book, you'll learn how to solve the trickiest problems in computer vision (CV) using the power of deep learning algorithms, and leverage the latest features of PyTorch 1.x to perform a variety of CV tasks. Starting with a quick overview of the PyTorch library and key deep learning concepts, the book then covers common and not-so-common challenges faced while performing image recognition, image segmentation, object detection, image generation, and other tasks. Next, you'll understand how to implement these tasks using various deep learning architectures such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and generative adversarial networks (GANs). Using a problem-solution approach, you'll learn how to solve any issue you might face while fine-tuning the performance of a model or integrating it into your application. Later, you'll get to grips with scaling your model to handle larger workloads, and implementing best practices for training models efficiently. By the end of this CV book, you'll be proficient in confidently solving many CV related problems using deep learning and PyTorch. What you will learn Develop, train and deploy deep learning algorithms using PyTorch 1.x Understand how to fine-tune and change hyperparameters to train deep learning algorithms Perform various CV tasks such as classification, detection, and segmentation Implement a neural style transfer network based on CNNs and pre-trained models Generate new images and implement adversarial attacks using GANs Implement video classification models based on RNN, LSTM, and 3D-CNN Discover best practices for training and deploying deep learning algorithms for CV applications Who this book is for Computer vision professionals, data scientists, deep learning engineers, and AI developers looking for quick solutions for various computer vision problems will find this book useful. Intermediate-level knowledge of computer vision concepts, along with Python programming experience is required.