Twenty papers are devoted to the treatment of a wide spectrum of problems in the theory and applications of dynamic games with the emphasis on pursuit-evasion differential games. The problem of capturability is thoroughly investigated, also the problem of noise-corrupted (state) measurements. Attention is given to aerial combat problems and their attendant modelling issues, such as variable speed of the combatants, the three-dimensionality of physical space, and the combat problem, i.e. problems related to 'role determination'.
Graduate-level text surveys games of fixed duration, games of pursuit and evasion, the computation of saddle points, games of survival, games with restricted phase coordinates, and N-person games. 1971 edition.
Résumé : "This will be a two-part handbook on Dynamic Game Theory and part of the Springer Reference program. Part I will be on the fundamentals and theory of dynamic games. It will serve as a quick reference and a source of detailed exposure to topics in dynamic games for a broad community of researchers, educators, practitioners, and students. Each topic will be covered in 2-3 chapters with one introducing basic theory and the other one or two covering recent advances and/or special topics. Part II will be on applications in fields such as economics, management science, engineering, biology, and the social sciences."
The classical optimal control theory deals with the determination of an optimal control that optimizes the criterion subjects to the dynamic constraint expressing the evolution of the system state under the influence of control variables. If this is extended to the case of multiple controllers (also called players) with different and sometimes conflicting optimization criteria (payoff function) it is possible to begin to explore differential games. Zero-sum differential games, also called differential games of pursuit, constitute the most developed part of differential games and are rigorously investigated. In this book, the full theory of differential games of pursuit with complete and partial information is developed. Numerous concrete pursuit-evasion games are solved (?life-line? games, simple pursuit games, etc.), and new time-consistent optimality principles in the n-person differential game theory are introduced and investigated.
The theory of two-person, zero-sum differential games started at the be ginning of the 1960s with the works of R. Isaacs in the United States and L. S. Pontryagin and his school in the former Soviet Union. Isaacs based his work on the Dynamic Programming method. He analyzed many special cases of the partial differential equation now called Hamilton Jacobi-Isaacs-briefiy HJI-trying to solve them explicitly and synthe sizing optimal feedbacks from the solution. He began a study of singular surfaces that was continued mainly by J. Breakwell and P. Bernhard and led to the explicit solution of some low-dimensional but highly nontriv ial games; a recent survey of this theory can be found in the book by J. Lewin entitled Differential Games (Springer, 1994). Since the early stages of the theory, several authors worked on making the notion of value of a differential game precise and providing a rigorous derivation of the HJI equation, which does not have a classical solution in most cases; we mention here the works of W. Fleming, A. Friedman (see his book, Differential Games, Wiley, 1971), P. P. Varaiya, E. Roxin, R. J. Elliott and N. J. Kalton, N. N. Krasovskii, and A. I. Subbotin (see their book Po sitional Differential Games, Nauka, 1974, and Springer, 1988), and L. D. Berkovitz. A major breakthrough was the introduction in the 1980s of two new notions of generalized solution for Hamilton-Jacobi equations, namely, viscosity solutions, by M. G. Crandall and P. -L.
Definitive work draws on game theory, calculus of variations, and control theory to solve an array of problems: military, pursuit and evasion, athletic contests, many more. Detailed examples, formal calculations. 1965 edition.
This volume contains fifteen articles on the topic of differential and dynamic games, focusing on both theory and applications. It covers a variety of areas and presents recent developments on topics of current interest. It should be useful to researchers in differential and dynamic games, systems and control, operations research and mathematical economics.
Game theory is the theory of social situations, and the majority of research into the topic focuses on how groups of people interact by developing formulas and algorithms to identify optimal strategies and to predict the outcome of interactions. Only fifty years old, it has already revolutionized economics and finance, and is spreading rapidly to a wide variety of fields. LQ Dynamic Optimization and Differential Games is an assessment of the state of the art in its field and the first modern book on linear-quadratic game theory, one of the most commonly used tools for modelling and analysing strategic decision making problems in economics and management. Linear quadratic dynamic models have a long tradition in economics, operations research and control engineering; and the author begins by describing the one-decision maker LQ dynamic optimization problem before introducing LQ differential games. Covers cooperative and non-cooperative scenarios, and treats the standard information structures (open-loop and feedback). Includes real-life economic examples to illustrate theoretical concepts and results. Presents problem formulations and sound mathematical problem analysis. Includes exercises and solutions, enabling use for self-study or as a course text. Supported by a website featuring solutions to exercises, further examples and computer code for numerical examples. LQ Dynamic Optimization and Differential Games offers a comprehensive introduction to the theory and practice of this extensively used class of economic models, and will appeal to applied mathematicians and econometricians as well as researchers and senior undergraduate/graduate students in economics, mathematics, engineering and management science.
We all played tag when we were kids. What most of us don't realize is that this simple chase game is in fact an application of pursuit theory, and that the same principles of games like tag, dodgeball, and hide-and-seek are also at play in military strategy, high-seas chases by the Coast Guard, and even romantic pursuits. In Chases and Escapes, Paul Nahin gives us the first complete history of this fascinating area of mathematics, from its classical analytical beginnings to the present day. Drawing on game theory, geometry, linear algebra, target-tracking algorithms, and much more, Nahin also offers an array of challenging puzzles with their historical background and broader applications. Chases and Escapes includes solutions to all problems and provides computer programs that readers can use for their own cutting-edge analysis. Now with a gripping new preface on how the Enola Gay escaped the shock wave from the atomic bomb dropped on Hiroshima, this book will appeal to anyone interested in the mathematics that underlie pursuit and evasion. Some images inside the book are unavailable due to digital copyright restrictions.
This book focuses on various aspects of dynamic game theory, presenting state-of-the-art research and serving as a testament to the vitality and growth of the field of dynamic games and their applications. The selected contributions, written by experts in their respective disciplines, are outgrowths of presentations originally given at the 13th International Symposium of Dynamic Games and Applications held in Wrocław. The book covers a variety of topics, ranging from theoretical developments in game theory and algorithmic methods to applications, examples, and analysis in fields as varied as environmental management, finance and economics, engineering, guidance and control, and social interaction.