Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy

Author: Joseph B. Lambert

Publisher: John Wiley & Sons

Published: 2019-01-04

Total Pages: 485

ISBN-13: 1119295238

DOWNLOAD EBOOK

Combines clear and concise discussions of key NMR concepts with succinct and illustrative examples Designed to cover a full course in Nuclear Magnetic Resonance (NMR) Spectroscopy, this text offers complete coverage of classic (one-dimensional) NMR as well as up-to-date coverage of two-dimensional NMR and other modern methods. It contains practical advice, theory, illustrated applications, and classroom-tested problems; looks at such important ideas as relaxation, NOEs, phase cycling, and processing parameters; and provides brief, yet fully comprehensible, examples. It also uniquely lists all of the general parameters for many experiments including mixing times, number of scans, relaxation times, and more. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition begins by introducing readers to NMR spectroscopy - an analytical technique used in modern chemistry, biochemistry, and biology that allows identification and characterization of organic, and some inorganic, compounds. It offers chapters covering: Experimental Methods; The Chemical Shift; The Coupling Constant; Further Topics in One-Dimensional NMR Spectroscopy; Two-Dimensional NMR Spectroscopy; Advanced Experimental Methods; and Structural Elucidation. Features classical analysis of chemical shifts and coupling constants for both protons and other nuclei, as well as modern multi‐pulse and multi-dimensional methods Contains experimental procedures and practical advice relative to the execution of NMR experiments Includes a chapter-long, worked-out problem that illustrates the application of nearly all current methods Offers appendices containing the theoretical basis of NMR, including the most modern approach that uses product operators and coherence-level diagrams By offering a balance between volumes aimed at NMR specialists and the structure-determination-only books that focus on synthetic organic chemists, Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition is an excellent text for students and post-graduate students working in analytical and bio-sciences, as well as scientists who use NMR spectroscopy as a primary tool in their work.


NMR

NMR

Author: P. J. Hore

Publisher: Oxford University Press, USA

Published: 2015

Total Pages: 133

ISBN-13: 0198703422

DOWNLOAD EBOOK

This primer describes the range of NMR techniques commonly used in modern research, and explains how these experiments actually work, giving a unique perspective on this powerful experimental tool.


Introduction to Functional Magnetic Resonance Imaging

Introduction to Functional Magnetic Resonance Imaging

Author: Richard B. Buxton

Publisher: Cambridge University Press

Published: 2009-08-27

Total Pages: 479

ISBN-13: 1139481304

DOWNLOAD EBOOK

Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.


Fundamentals of Protein NMR Spectroscopy

Fundamentals of Protein NMR Spectroscopy

Author: Gordon S. Rule

Publisher: Springer Science & Business Media

Published: 2006-02-16

Total Pages: 543

ISBN-13: 1402035004

DOWNLOAD EBOOK

NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data processing. End of chapter exercises are included to emphasize important concepts. Fundamentals of Protein NMR Spectroscopy not only offer students a systematic, in-depth, understanding of modern NMR spectroscopy and its application to biomolecular systems, but will also be a useful reference for the experienced investigator.


Nuclear Magnetic Resonance

Nuclear Magnetic Resonance

Author: T.I. Atta-Ur-Rahman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 366

ISBN-13: 1461248949

DOWNLOAD EBOOK

Nuclear magnetic resonance spectroscopy is presently going through an explosive phase of development. This has been brought about largely on account of the advent of Fourier transform NMR spectrometers linked to powerful microcomputers which have opened up a whole new world for structural chemists and biochemists. This is exemplified by a host of publications, especially on new pulse sequences, which continue to provide new exciting modifications for recording two-dimensional NMR. Moreover, NMR is no longer confined to structural chemists but has moved firmly into the area of medicine as a powerful nondestructive body scanning technique. With this background, I felt that there was need for a text which would provide a fairly comprehensive account of the important features of 1 H- and 13C-NMR spectroscopy in one book, as well as make available an up-to-date account of recent developments of new pulse sequences, with particular reference to 2D-NMR spectroscopy. Since this book is written for students of chemistry and biochemistry as well as for biology students who have chemistry as a subsidiary, it was decided to avoid a complex mathematical treatment and to present, as far as possible without oversimplification, a qualitative account of 1 H- and 13C-NMR spectroscopy as it is today. I hope that the book satisfactorily meets these objectives.


Translational Dynamics and Magnetic Resonance

Translational Dynamics and Magnetic Resonance

Author: Paul T. Callaghan

Publisher: OUP Oxford

Published: 2011-09-15

Total Pages: 710

ISBN-13: 0191621048

DOWNLOAD EBOOK

Taking the reader through the underlying principles of molecular translational dynamics, this book outlines the ways in which magnetic resonance, through the use of magnetic field gradients, can reveal those dynamics. The measurement of diffusion and flow, over different length and time scales, provides unique insight regarding fluid interactions with porous materials, as well as molecular organisation in soft matter and complex fluids. The book covers both time and frequency domain methodologies, as well as advances in scattering and diffraction methods, multidimensional exchange and correlation experiments and orientational correlation methods ideal for studying anisotropic environments. At the heart of these new methods resides the ubiquitous spin echo, a phenomenon whose discovery underpins nearly every major development in magnetic resonance methodology. Measuring molecular translational motion does not require high spectral resolution and so finds application in new NMR technologies concerned with 'outside the laboratory' applications, in geophysics and petroleum physics, in horticulture, in food technology, in security screening, and in environmental monitoring.


Basic 1H- and 13C-NMR Spectroscopy

Basic 1H- and 13C-NMR Spectroscopy

Author: Metin Balci

Publisher: Elsevier

Published: 2005-01-19

Total Pages: 441

ISBN-13: 0080525539

DOWNLOAD EBOOK

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful and theoretically complex analytical tool. Basic 1H- and 13C-NMR Spectroscopy provides an introduction to the principles and applications of NMR spectroscopy. Whilst looking at the problems students encounter when using NMR spectroscopy, the author avoids the complicated mathematics that are applied within the field. Providing a rational description of the NMR phenomenon, this book is easy to read and is suitable for the undergraduate and graduate student in chemistry. - Describes the fundamental principles of the pulse NMR experiment and 2D NMR spectra - Easy to read and written with the undergraduate and graduate chemistry student in mind - Provides a rational description of NMR spectroscopy without complicated mathematics


Compact NMR

Compact NMR

Author: Bernhard Blümich

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2014-08-22

Total Pages: 305

ISBN-13: 3110374587

DOWNLOAD EBOOK

The goal of this book is to provide an introduction to the practical use of mobile NMR at a level as basic as the operation of a smart phone. Each description follows the same didactic pattern: introduction, basic theory, pulse sequences and parameters, beginners-level measurements, advanced-level measurements, and data processing. Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue depicting the brain function and the beating heart. In both applications large super-conducting magnets are employed which magnetize atomic nuclei of an object positioned inside the magnet. Their circulating motion is interrogated by radio-frequency waves. Depending on the operating mode, the frequency spectrum provides the chemist with molecular information, the medical doctor with anatomic images, while the materials scientist is interested in NMR relaxation parameters, which scale with material properties and determine the contrast in magnetic resonance images. Recent advances in magnet technology led to a variety of small permanent magnets, by which NMR spectra, images, and relaxation parameters can be measured with mobile and low-cost instruments.


Principles of High Resolution NMR in Solids

Principles of High Resolution NMR in Solids

Author: M. Mehring

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 352

ISBN-13: 3642687563

DOWNLOAD EBOOK

The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which treats the principles, theo retical foundations and applications of these rather sophisticated experimental techniques. Therefore I wrote a monograph on the subject in 1976. Very soon new ideas led to the developement of "two-dimensional spectroscopy" and "multiple-quantum spectroscopy", topics which were not covered in the first edition of my book. Moreover an exponential growth of literature appeared in this area of research leaving the beginner in an awkward situation of tracing back from a current article to the roots of the experiment.