Pseudo-Differential Operators on Manifolds with Singularities

Pseudo-Differential Operators on Manifolds with Singularities

Author: B.-W. Schulze

Publisher: Elsevier

Published: 1991-10-17

Total Pages: 417

ISBN-13: 0080875459

DOWNLOAD EBOOK

The analysis of differential equations in domains and on manifolds with singularities belongs to the main streams of recent developments in applied and pure mathematics. The applications and concrete models from engineering and physics are often classical but the modern structure calculus was only possible since the achievements of pseudo-differential operators. This led to deep connections with index theory, topology and mathematical physics.The present book is devoted to elliptic partial differential equations in the framework of pseudo-differential operators. The first chapter contains the Mellin pseudo-differential calculus on R+ and the functional analysis of weighted Sobolev spaces with discrete and continuous asymptotics. Chapter 2 is devoted to the analogous theory on manifolds with conical singularities, Chapter 3 to manifolds with edges. Employed are pseudo-differential operators along edges with cone-operator-valued symbols.


Pseudo-Differential Operators, Singularities, Applications

Pseudo-Differential Operators, Singularities, Applications

Author: Iouri Egorov

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 360

ISBN-13: 3034889003

DOWNLOAD EBOOK

This book grew out of lecture notes based on the DMV seminar "Pseudo- Differential Operators, Singularities, Applications" held by the authors in Reisenburg-Günzburg, 12–19 July 1992. The modern theory of elliptic boundary value problems in domains having conical or edge singularities on the boundary as well as the classical theory of elliptic boundary value problems and the original Kondratiev theory are presented. This material forms the foundation for the second part of the book which contains a new construction of pseudo-differential operators with symbols corresponding to the singularities of the boundary of different dimensions. This allows in particular to obtain complete asymptotic expansions of solutions near these singularities.


Pseudo-differential Operators

Pseudo-differential Operators

Author: Luigi Rodino

Publisher: American Mathematical Soc.

Published: 2007-11-21

Total Pages: 432

ISBN-13: 9780821871553

DOWNLOAD EBOOK

This volume is based on lectures given at the workshop on pseudo-differential operators held at the Fields Institute from December 11, 2006 to December 15, 2006. The two main themes of the workshop and hence this volume are partial differential equations and time-frequency analysis. The contents of this volume consist of five mini-courses for graduate students and post-docs, and fifteen papers on related topics. Of particular interest in this volume are the mathematical underpinnings, applications and ramifications of the relatively new Stockwell transform, which is a hybrid of the Gabor transform and the wavelet transform. The twenty papers in this volume reflect modern trends in the development of pseudo-differential operators.


New Developments in Pseudo-Differential Operators

New Developments in Pseudo-Differential Operators

Author: Luigi Rodino

Publisher: Springer Science & Business Media

Published: 2009-01-06

Total Pages: 337

ISBN-13: 3764389699

DOWNLOAD EBOOK

This volume consists of peer-reviewed papers related to lectures on pseudo-differential operators presented at the meeting of the ISAAC Group in Pseudo-Differential Operators (IGPDO) held on August 13-18, 2007, and invited papers by experts in the field.


Tools for PDE

Tools for PDE

Author: Michael E. Taylor

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 274

ISBN-13: 0821843788

DOWNLOAD EBOOK

Developing three related tools that are useful in the analysis of partial differential equations (PDEs) arising from the classical study of singular integral operators, this text considers pseudodifferential operators, paradifferential operators, and layer potentials.


Pseudo-Differential Operators and Symmetries

Pseudo-Differential Operators and Symmetries

Author: Michael Ruzhansky

Publisher: Springer Science & Business Media

Published: 2009-12-29

Total Pages: 712

ISBN-13: 3764385146

DOWNLOAD EBOOK

This monograph is devoted to the development of the theory of pseudo-di?erential n operators on spaces with symmetries. Such spaces are the Euclidean space R ,the n torus T , compact Lie groups and compact homogeneous spaces. The book consists of several parts. One of our aims has been not only to present new results on pseudo-di?erential operators but also to show parallels between di?erent approaches to pseudo-di?erential operators on di?erent spaces. Moreover, we tried to present the material in a self-contained way to make it accessible for readers approaching the material for the ?rst time. However, di?erent spaces on which we develop the theory of pseudo-di?er- tial operators require di?erent backgrounds. Thus, while operators on the - clidean space in Chapter 2 rely on the well-known Euclidean Fourier analysis, pseudo-di?erentialoperatorsonthetorusandmoregeneralLiegroupsinChapters 4 and 10 require certain backgrounds in discrete analysis and in the representation theory of compact Lie groups, which we therefore present in Chapter 3 and in Part III,respectively. Moreover,anyonewhowishestoworkwithpseudo-di?erential- erators on Lie groups will certainly bene?t from a good grasp of certain aspects of representation theory. That is why we present the main elements of this theory in Part III, thus eliminating the necessity for the reader to consult other sources for most of the time. Similarly, the backgrounds for the theory of pseudo-di?erential 3 operators on S and SU(2) developed in Chapter 12 can be found in Chapter 11 presented in a self-contained way suitable for immediate use.


Aspects of Boundary Problems in Analysis and Geometry

Aspects of Boundary Problems in Analysis and Geometry

Author: Juan Gil

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 574

ISBN-13: 3034878508

DOWNLOAD EBOOK

Boundary problems constitute an essential field of common mathematical interest, they lie in the center of research activities both in analysis and geometry. This book encompasses material from both disciplines, and focuses on their interactions which are particularly apparent in this field. Moreover, the survey style of the contributions makes the topics accessible to a broad audience with a background in analysis or geometry, and enables the reader to get a quick overview.


Pseudo-Differential Operators: Groups, Geometry and Applications

Pseudo-Differential Operators: Groups, Geometry and Applications

Author: M. W. Wong

Publisher: Birkhäuser

Published: 2017-01-20

Total Pages: 242

ISBN-13: 3319475126

DOWNLOAD EBOOK

This volume consists of papers inspired by the special session on pseudo-differential operators at the 10th ISAAC Congress held at the University of Macau, August 3-8, 2015 and the mini-symposium on pseudo-differential operators in industries and technologies at the 8th ICIAM held at the National Convention Center in Beijing, August 10-14, 2015. The twelve papers included present cutting-edge trends in pseudo-differential operators and applications from the perspectives of Lie groups (Chapters 1-2), geometry (Chapters 3-5) and applications (Chapters 6-12). Many contributions cover applications in probability, differential equations and time-frequency analysis. A focus on the synergies of pseudo-differential operators with applications, especially real-life applications, enhances understanding of the analysis and the usefulness of these operators.


The Technique of Pseudodifferential Operators

The Technique of Pseudodifferential Operators

Author: Heinz Otto Cordes

Publisher: Cambridge University Press

Published: 1995-02-23

Total Pages: 398

ISBN-13: 0521378648

DOWNLOAD EBOOK

Pseudodifferential operators arise naturally in a solution of boundary problems for partial differential equations. The formalism of these operators serves to make the Fourier-Laplace method applicable for nonconstant coefficient equations. This book presents the technique of pseudodifferential operators and its applications, especially to the Dirac theory of quantum mechanics. The treatment uses 'Leibniz formulas' with integral remainders or as asymptotic series. While a pseudodifferential operator is commonly defined by an integral formula, it also may be described by invariance under action of a Lie group. The author discusses connections to the theory of C*-algebras, invariant algebras of pseudodifferential operators under hyperbolic evolution, and the relation of the hyperbolic theory to the propagation of maximal ideals. The Technique of Pseudodifferential Operators will be of particular interest to researchers in partial differential equations and mathematical physics.