Describes the technology and engineering of the Large Hadron collider (LHC), one of the greatest scientific marvels of this young 21st century. This book traces the feat of its construction, written by the head scientists involved, placed into the context of the scientific goals and principles.
Understanding of protons and neutrons, or "nucleons"â€"the building blocks of atomic nucleiâ€"has advanced dramatically, both theoretically and experimentally, in the past half century. A central goal of modern nuclear physics is to understand the structure of the proton and neutron directly from the dynamics of their quarks and gluons governed by the theory of their interactions, quantum chromodynamics (QCD), and how nuclear interactions between protons and neutrons emerge from these dynamics. With deeper understanding of the quark-gluon structure of matter, scientists are poised to reach a deeper picture of these building blocks, and atomic nuclei themselves, as collective many-body systems with new emergent behavior. The development of a U.S. domestic electron-ion collider (EIC) facility has the potential to answer questions that are central to completing an understanding of atoms and integral to the agenda of nuclear physics today. This study assesses the merits and significance of the science that could be addressed by an EIC, and its importance to nuclear physics in particular and to the physical sciences in general. It evaluates the significance of the science that would be enabled by the construction of an EIC, its benefits to U.S. leadership in nuclear physics, and the benefits to other fields of science of a U.S.-based EIC.
In an epoch when particle physics is awaiting a major step forward, the Large Hydron Collider (LHC) at CERN, Geneva will soon be operational. It will collide a beam of high energy protons with another similar beam circulation in the same 27 km tunnel but in the opposite direction, resulting in the production of many elementary particles some never created in the laboratory before. It is widely expected that the LHC will discover the Higgs boson, the particle which supposedly lends masses to all other fundamental particles. In addition, the question as to whether there is some new law of physics at such high energy is likely to be answered through this experiment. The present volume contains a collection of articles written by international experts, both theoreticians and experimentalists, from India and abroad, which aims to acquaint a non-specialist with some basic issues related to the LHC. At the same time, it is expected to be a useful, rudimentary companion of introductory exposition and technical expertise alike, and it is hoped to become unique in its kind. The fact that there is substantial Indian involvement in the entire LHC endeavour, at all levels including fabrication, physics analysis procedures as well as theoretical studies, is also amply brought out in the collection.
A fascinating tour of particle physics from Nobel Prize winner Leon Lederman. At the root of particle physics is an invincible sense of curiosity. Leon Lederman embraces this spirit of inquiry as he moves from the Greeks' earliest scientific observations to Einstein and beyond to chart this unique arm of scientific study. His survey concludes with the Higgs boson, nicknamed the God Particle, which scientists hypothesize will help unlock the last secrets of the subatomic universe, quarks and all--it's the dogged pursuit of this almost mystical entity that inspires Lederman's witty and accessible history.
"When the discovery of the Higgs Boson at CERN hit headlines in 2012, the world was stunned by this achievement of modern science. Less well known however, are the ways in which this advanced discovery has benefitted wider society. The Large Hadron Collider -- The Greatest Adventure in Town charts a path through the cultural, economic and medical gains from modern particle physics. It illustrates its messages through the ATLAS experiment, one of the two big experiments which found the Higgs particle. Moving away from in-depth physics analysis, it draws on the unparalleled interest in fundamental physics aroused by the discovery of the Higgs Boson, and relates it to developments in wide-ranging every-day use, including the internet, its successor 'The Grid', and modern-day cancer treatments. These wider gains of developing the 27 kilometre accelerator with its detectors are presented through first-hand interviews, and extensively illustrated throughout the book. Interviewees are leading physicists including successive heads of ATLAS, a top physics historian, a highly original economic strategist and the Nobel Prize-winning geneticist and president of the Royal Society in London. These entertaining and informative insights provide both specialists and non-specialists a unique view into the world of research surrounding the ATLAS experiment, and its implications, and the extent and style of scientific collaboration necessary to achieve its successes"--
This book provides a general description of the search for and discovery of the Higgs boson (particle) at CERN’s Large Hadron Collider. The goal is to provide a relatively brief overview of the issues, instruments and techniques relevant for this search; written by a physicist who was directly involved. The Higgs boson mat be the one particle that was studied the most before its discovery and the story from postulation in 1964 to detection in 2012 is a fascinating one. The story is told here while detailing the fundamentals of particle physics.
This book offers the unique possibility of tackling the problem of hadronic deconfinement from different perspectives. After general introductions to the physical issues, from both the theoretical and the experimental point of view, the book presents the most recent expertise on field theory approaches to the QCD phase diagram, many-body techniques and applications, the dynamics of phase transitions, and phenomenological analysis of relativistic heavy ion collisions. One of the major goals of this book is to promote interchange among those fields of research, which have traditionally been cultivated by different communities of physicists. The contributions in the book help in obtaining deep comprehension of this new state of matter, a system of deconfined quarks and gluons. At the same time the book offers a few examples of how the seeds of the deconfined state are looked for in the phenomenological analysis of the observables measured in relativistic heavy ion collisions. The main topics are dealt with in a pedagogical style, suitable for beginners as well as experienced researchers.