This book covers the past, present and future of the intra-cellular trafficking field, which has made a quantum leap in the last few decades. It details how the field has developed and evolved as well as examines future directions.
In this book, skilled experts provide the most up-to-date, step-by-step laboratory protocols for examining molecular machinery and biological functions of exocytosis and endocytosis in vitro and in vivo. The book is insightful to both newcomers and seasoned professionals. It offers a unique and highly practical guide to versatile laboratory tools developed to study various aspects of intracellular vesicle trafficking in simple model systems and living organisms.
Since the discovery of the gene for green fluorescent protein (GFP), derived from jellyfish, this protein that emits a green glow has initiated a revolution in molecular biosciences. With this tool, it is now possible to visualize nearly any protein of interest in any cell or tissue of any species. Since the publication of the first edition, there have been tremendously significant technological advances, including development of new mutant variants. Proteins are now available in yellow and blue, and Novel Fluorescent Proteins (NFPs) have expanded their utility in developing biosensors, biological markers, and other biological applications. This updated, expanded new edition places emphasis on the rise of NFPs, including new chapters on NFP properties with detailed protocols, applications of GFPs and NFPs in industry research, and biosensors. This book provides a solid theoretical framework, along with detailed, practical guidance on use of GFPs and NFPs with discussion of potential pitfalls. The expert contributors provide real examples in showing how to tailor GFP/NFP to specific systems, maximize expression, and enhance detection.
Cell surface membranes have long been characterized as two-dimensional fluids whose mobile components are randomized by diffusion in the plane of the membrane bilayer. Recent research has indicated that cell surface membranes are highly organized and ordered and that important functional units of membranes appear as arrays of interacting molecules rather than as single, freely diffusing molecules. Mobility and Proximity in Biological Membranes provides an overview of the results obtained from biophysical methods for probing the organization of cell surface membranes. These results are presented in the context of detailed treatments of the theory and the technical demands of each of the methods. The book describes a versatile and easily applied mode for investigating molecular proximities in plasma membranes in a flow cytometer. Its analysis of lipid fluidity and viscosity of membranes and the rotational mobility of proteins offers intimate insight into the physical chemistry of biological membranes. The electrophysiology of lymphocytes is presented with focus on its importance in different diseases. New techniques are described, and new data, new possibilities, and future trends are presented by world experts. This book's chapters can serve both as guides to the existing literature and as starting points for new experiments and approaches associated with problems in membrane function.
For the first time experts in the area of signalling research with a focus on the ARF family have contributed to the production of a title devoted to ARF biology. A comprehensive phylogenetic analysis of the ARF family, tables of the ARF GEFs and ARF GAPs, and more than a dozen chapters describing them in detail are provided. The impact of the ARF proteins on widely diverse aspects of cell biology and cell signalling can be clearly seen from the activities described; including membrane traffic, lipid metabolism, receptor desensitization, mouse development, microtubule dynamics, and bacterial pathogenesis. Anyone interested in understanding the complexities of cell signalling and the integration of signalling networks will benefit from this volume.
This volume provides basic and cutting-edge methods and protocols to study the major characteristics of eukaryotic cells. Chapters detail the different pathways of endocytosis in vivo, real time imaging of endocytic steps, endocytosis in model organisms, super-resolution methods to follow proteins involved in exocytosis, specific protocols for exocytosis in specialized cells such as neutrophils or neuroendocrine cells, as well as secretion of exosomes. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and clearly written, Exocytosis and Endocytosis: Methods and Protocols is a valuable resource for researchers in the fields of cell biology, neurology, immunology, oncology, and those interested in studying protein trafficking and signal regulation.
An essential text, this is a fully updated second edition of a classic, now in two volumes. It provides rapid access to information on molecular pharmacology for research scientists, clinicians and advanced students. With the A-Z format of over 2,000 entries, around 350 authors provide a complete reference to the area of molecular pharmacology. The book combines the knowledge of classic pharmacology with the more recent approach of the precise analysis of the molecular mechanisms by which drugs exert their effects. Short keyword entries define common acronyms, terms and phrases. In addition, detailed essays provide in-depth information on drugs, cellular processes, molecular targets, techniques, molecular mechanisms, and general principles.