This book explores the journey of biotechnology, searching for new avenues and noting the impressive accomplishments to date. It has harmonious blend of facts, applications and new ideas. Fast-paced biotechnologies are broadly applied and are being continuously explored in areas like the environmental, industrial, agricultural and medical sciences. The sequencing of the human genome has opened new therapeutic opportunities and enriched the field of medical biotechnology while analysis of biomolecules using proteomics and microarray technologies along with the simultaneous discovery and development of new modes of detection are paving the way for ever-faster and more reliable diagnostic methods. Life-saving bio-pharmaceuticals are being churned out at an amazing rate, and the unraveling of biological processes has facilitated drug designing and discovery processes. Advances in regenerative medical technologies (stem cell therapy, tissue engineering, and gene therapy) look extremely promising, transcending the limitations of all existing fields and opening new dimensions for characterizing and combating diseases.
Protein hydrolysates, otherwise commonly known as peptones or peptides, are used in a wide variety of products in fermentation and biotechnology industries. The term “peptone” was first introduced in 1880 by Nagelli for growing bacterial cultures. However, later it was discovered that peptones derived from the partial digestion of proteins would furnish organic nitrogen in readily available form. Ever since, p- tones, which are commonly known as protein hydrolysates, have been used not only for growth of microbial cultures, but also as nitrogen source in commercial fermen- tions using animal cells and recombinant microorganisms for the production of value added products such as therapeutic proteins, hormones, vaccines, etc. Today, the characterization, screening and manufacturing of protein hyd- lysates has become more sophisticated, with the introduction of reliable analytical instrumentation, high throughput screening techniques coupled with statistical design approaches, novel enzymes and efficient downstream processing equipment. This has enabled the introduction of custom-built products for specialized appli- tions in diverse fields of fermentation and biotechnology, such as the following. 1. Protein hydrolysates are used as much more than a simple nitrogen source. For example, the productivities of several therapeutic drugs made by animal cells and recombinant microorganisms have been markedly increased by use of p- tein hydrolysates. This is extremely important when capacities are limited. 2. Protein hydrolysates are employed in the manufacturing of vaccines by ferm- tation processes and also used as vaccine stabilizers.
Proteins Biochemistry and Biotechnology 2e is a definitive source of information for all those interested in protein science, and particularly the commercial production and isolation of specific proteins, and their subsequent utilization for applied purposes in industry and medicine. Fully updated throughout with new or fundamentally revised sections on proteomics as, bioinformatics, protein glycosylation and engineering, well as sections detailing advances in upstream processing and newer protein applications such as enzyme-based biofuel production this new edition has an increased focus on biochemistry to ensure the balance between biochemisty and biotechnology, enhanced with numerous case studies. This second edition is an invaluable text for undergraduates of biochemistry and biotechnology but will also be relevant to students of microbiology, molecular biology, bioinformatics and any branch of the biomedical sciences who require a broad overview of the various medical, diagnostic and industrial uses of proteins. • Provides a comprehensive overview of all aspects of protein biochemisty and protein biotechnology • Includes numerous case studies • Increased focus on protein biochemistry to ensure balance between biochemisty and biotechnology • Includes new section focusing on proteomics as well as sections detailing protein function and enzyme-based biofuel production "With the potential of a standard reference source on the topic, any molecular biotechnologist will profit greatly from having this excellent book. " (Engineering in Life Sciences, 2004; Vol 5; No. 5) “Few texts would be considered competitors, and none compare favorably." (Biochemistry and Molecular Education, July/August 2002) "...The book is well written, making it informative and easy to read..." (The Biochemist, June 2002)
Proteins are the servants of life. They occur in all com- nent parts of living organisms and are staggering in their fu- tional variety, despite their chemical similarity. Even the simplest single-cell organism contains a thousand different p- teins, fulfilling a wide range of life-supporting roles. Additions to the total number of known proteins are being made on an increasing scale through the discovery of mutant strains or their production by genetic manipulation. The total international protein literature could fill a medi- sized building and is growing at an ever-increasing rate. The reader might be forgiven for asking whether yet another book on proteins, their properties, and functions can serve a useful purpose. An explanation of the origin of this book may serve as justification. The authors form the tutorial team for an int- sive postexperience course on protein characterization or- nized by the Center for Professional Advancement, East Brunswick, New Jersey, an educational foundation. The course was first mounted in Amsterdam in 1982 and has since been repeated several times, in both Amsterdam and the US, with participants from North America and most European countries. In a predecessor to this book, emphasis was placed on the role of protein isolation in the food industry, because at the time this reflected the interests of most of the participants at the course. Today, isolated proteins for food use are extracted from yeasts, fungal sources, legumes, oilseeds, cereals, and leaves.
In this era of biotechnology there have been many books covering the fundamentals of recombinant DNA technology and protein chemistry. However, not many sources are available for the pharmaceutical develop ment scientist and other personnel responsible for the commercialization of the finished dosage forms of these new biopharmaceuticals and other products from biotechnology. This text will help to fill this gap. Once active biopharmaceutical molecules are candidates for clinical trial investigation and subsequent commercialization, a number of other activities must take place while research and development on these molecules continues. The active ingredient itself must be formulated into a finished dosage form that can be conveniently used by health care professionals and patients. Properties of the biopharmaceutical molecule must be clearly understood so that the appropriate finished product formulation can be developed. Finished product formulation development includes not only the chemical formulation, but also the packaging system, the manufacturing process, and appropriate control strategies to assure such good manufacturing practice attributes as safety, identity, strength, purity, and quality.
The subject of aluminium and Alzheimer's disease has been plagued with controversy. This controversy has served to obscure much of the scientific research in this field, and subsequently has obscured the possibility that aluminium is a contributory factor in the aetiology of Alzheimer's disease. This book brings together many of the world's leading scientists researching aluminium and life and contains their critical summaries on the known facts about aluminium toxicity in man and to offer an opinion on the implications of this knowledge on a link between aluminium and Alzheimer's disease. The subject areas of the chapters were chosen to reflect the myriad of ways that aluminium is known to impact upon mammalian physiology and function and range from clinical studies, through animal models of disease to the detailed biochemistry of aluminium toxicity. Chapters are also included on epidemiology and other factors involved in the aetiology of Alzheimer's.This is the first time that this subject has been treated in such a comprehensive manner. The research detailed in each chapter, includes the latest research in the field, it has been critically appraised and this appraisal has been used by each author to present an informed opinion of its relevance to aluminium and Alzheimer's disease. The chapters are much more than reviews; they are a statement of the state of the art and of what the future may hold for research in this field. As a whole they show the high quality of research that has been carried out in our efforts to understand the toxicity of aluminium in man and that we are far away from discounting the possibility that aluminium is a contributory factor in the aetiology of Alzheimer's disease.
While the choices of microbial and eukaryotic expression systems for production of recombinant proteins are many, most researchers in academic and industrial settings do not have ready access to pertinent biological and technical information since it is normally scattered throughout the scientific literature. This book closes the gap by providing information on the general biology of the host organism, a description of the expression platform, a methodological section -- with strains, genetic elements, vectors and special methods, where applicable -- as well as examples of proteins produced with the respective platform. The systems thus described are well balanced by the inclusion of three prokaryotes (two Gram-negatives and one Gram-positive), four yeasts, two filamentous fungi and two higher eukaryotic cell systems -- mammalian and plant cells. Throughout, the book provides valuable practical and theoretical information on the criteria and schemes for selecting the appropriate expression platform, the possibility and practicality of a universal expression vector, and on comparative industrial-scale fermentation, with the production of a recombinant Hepatitis B vaccine chosen as an industrial example. With a foreword by Herbert P. Schweizer, Colorado State University, USA: "As a whole, this book is a valuable and overdue resource for a varied audience. It is a practical guide for academic and industrial researchers who are confronted with the design of the most suitable expression platform for their favorite protein for technical or pharmaceutical purposes. In addition, the book is also a valuable study resource for professors and students in the fields of applied biology and biotechnology."
Biotechnology and Biopharmaceuticals: Transforming Proteins and Genes into Drugs, Second Edition addresses the pivotal issues relating to translational science, including preclinical and clinical drug development, regulatory science, pharmaco-economics and cost-effectiveness considerations. The new edition also provides an update on new proteins and genetic medicines, the translational and integrated sciences that continue to fuel the innovations in medicine, as well as the new areas of therapeutic development including cancer vaccines, stem cell therapeutics, and cell-based therapies.
With the advent of recombinant DNA technology, expressing heterologous proteins in microorganisms rapidly became the method of choice for their production at laboratory and industrial scale. Bacteria, yeasts and other hosts can be grown to high biomass levels efficiently and inexpensively. Obtaining high yields of recombinant proteins from this material was only feasible thanks to constant research on microbial genetics and physiology that led to novel strains, plasmids and cultivation strategies. Despite the spectacular expansion of the field, there is still much room for progress. Improving the levels of expression and the solubility of a recombinant protein can be quite challenging. Accumulation of the product in the cell can lead to stress responses which affect cell growth. Buildup of insoluble and biologically inactive aggregates (inclusion bodies) lowers the yield of production. This is particularly true for obtaining membrane proteins or high-molecular weight and multi-domain proteins. Also, obtaining eukaryotic proteins in a prokaryotic background (for example, plant or animal proteins in bacteria) results in a product that lack post-translational modifications, often required for functionality. Changing to a eukaryotic host (yeasts or filamentous fungi) may not be a proper solution since the pattern of sugar modifications is different than in higher eukaryotes. Still, many advances in the last couple of decades have provided to researchers a wide variety of strategies to maximize the production of their recombinant protein of choice. Everything starts with the careful selection of the host. Be it bacteria or yeast, a broad list of strains is available for overcoming codon use bias, incorrect disulfide bond formation, protein toxicity and lack of post-translational modifications. Also, a huge catalog of plasmids allows choosing for different fusion partners for improving solubility, protein secretion, chaperone co-expression, antibiotic resistance and promoter strength. Next, controlling culture conditions like temperature, inducer and media composition can bolster recombinant protein production. With this Research Topic, we aim to provide an encyclopedic account of the existing approaches to the expression of recombinant proteins in microorganisms, highlight recent discoveries and analyze the future prospects of this exciting and ever-growing field.