Protein Folding Kinetics

Protein Folding Kinetics

Author: Bengt Nölting

Publisher: Springer Science & Business Media

Published: 2005-12-05

Total Pages: 222

ISBN-13: 354027278X

DOWNLOAD EBOOK

First methods book which includes many detailed descriptions Absolutely needed and thus timely for the scientific community Comprises 15% more content and includes the mentioned special features


Lectures On Statistical Physics And Protein Folding

Lectures On Statistical Physics And Protein Folding

Author: Kerson Huang

Publisher: World Scientific

Published: 2005-05-30

Total Pages: 159

ISBN-13: 9814481068

DOWNLOAD EBOOK

This book introduces an approach to protein folding from the point of view of kinetic theory. There is an abundance of data on protein folding, but few proposals are available on the mechanism driving the process. Here, presented for the first time, are suggestions on possible research directions, as developed by the author in collaboration with C C Lin.The first half of this invaluable book contains a concise but relatively complete review of relevant topics in statistical mechanics and kinetic theory. It includes standard topics such as thermodynamics, the Maxwell-Boltzmann distribution, and ensemble theory. Special discussions include the dynamics of phase transitions, and Brownian motion as an illustration of stochastic processes.The second half develops topics in molecular biology and protein structure, with a view to discovering mechanisms underlying protein folding. Attention is focused on the energy flow through the protein in its folded state. A mathematical model, based on the Brownian motion of coupled harmonic oscillators, is worked out in the appendix.


Nmr In Structural Biology: A Collection Of Papers By Kurt Wuthrich

Nmr In Structural Biology: A Collection Of Papers By Kurt Wuthrich

Author: Kurt Wuthrich

Publisher: World Scientific

Published: 1995-07-31

Total Pages: 760

ISBN-13: 9814500496

DOWNLOAD EBOOK

The volume presents a survey of the research by Kurt Wüthrich and his associates during the period 1965 to 1994. A selection of reprints of original papers on the use of NMR spectroscopy in structural biology is supplemented with an introduction, which outlines the foundations and the historical development of the use of NMR spectroscopy for the determination of three-dimensional structures of biological macromolecules in solution. The original papers are presented in groups highlighting protein structure determination by NMR, studies of dynamic properties and hydration of biological macromolecules, and practical applications of the NMR methodology in fields such as enzymology, transcriptional regulation, immunosuppression and protein folding.


Protein Folding

Protein Folding

Author: Cláudio M. Gomes

Publisher: Springer

Published: 2019-02-25

Total Pages: 63

ISBN-13: 331900882X

DOWNLOAD EBOOK

This snapshot volume is designed to provide a smooth entry into the field of protein folding. Presented in a concise manner, each section introduces key concepts while providing a brief overview of the relevant literature. Outlook subsections will pinpoint specific aspects related to emerging methodologies, concepts and trends.


Protein Physics

Protein Physics

Author: Alexei V. Finkelstein

Publisher: Elsevier

Published: 2016-06-22

Total Pages: 530

ISBN-13: 0081012365

DOWNLOAD EBOOK

Protein Physics: A Course of Lectures covers the most general problems of protein structure, folding and function. It describes key experimental facts and introduces concepts and theories, dealing with fibrous, membrane, and water-soluble globular proteins, in both their native and denatured states. The book systematically summarizes and presents the results of several decades of worldwide fundamental research on protein physics, structure, and folding, describing many physical models that help readers make estimates and predictions of physical processes that occur in proteins. New to this revised edition is the inclusion of novel information on amyloid aggregation, natively disordered proteins, protein folding in vivo, protein motors, misfolding, chameleon proteins, advances in protein engineering & design, and advances in the modeling of protein folding. Further, the book provides problems with solutions, many new and updated references, and physical and mathematical appendices. In addition, new figures (including stereo drawings, with a special appendix showing how to use them) are added, making this an ideal resource for graduate and advanced undergraduate students and researchers in academia in the fields of biophysics, physics, biochemistry, biologists, biotechnology, and chemistry. Fully revised and expanded new edition based on the latest research developments in protein physics Written by the world's top expert in the field Deals with fibrous, membrane, and water-soluble globular proteins, in both their native and denatured states Summarizes, in a systematic form, the results of several decades of worldwide fundamental research on protein physics and their structure and folding Examines experimental data on protein structure in the post-genome era


Folding/unfolding Kinetics of Lattice Proteins by Applying a Simple Statistical Mechanical Model for Protein Folding

Folding/unfolding Kinetics of Lattice Proteins by Applying a Simple Statistical Mechanical Model for Protein Folding

Author: Hiroshi Wako

Publisher: Nova Biomedical Books

Published: 2011

Total Pages: 0

ISBN-13: 9781617619229

DOWNLOAD EBOOK

The folding/unfolding kinetics of a three-dimensional lattice protein was studied using a simple statistical mechanical model for protein folding that was previously developed. The model considers the specificity of an amino acid sequence and the native structure of a given protein. The characteristic relaxation rate on the free energy surface was calculated starting from a completely unfolded structure (or native structure) that is assumed to associate with a folding rate (or an unfolding rate). To elucidate the roles of individual amino acid residues in protein folding/unfolding kinetics, the kinetic properties for all possible single amino acid substitutions of these proteins were calculated and their responses were examined. This book presents and discusses research results in the kinetics of protein folding/unfolding.


Protein Actions: Principles and Modeling

Protein Actions: Principles and Modeling

Author: Ivet Bahar

Publisher: Garland Science

Published: 2017-02-14

Total Pages: 337

ISBN-13: 1351815016

DOWNLOAD EBOOK

Protein Actions: Principles and Modeling is aimed at graduates, advanced undergraduates, and any professional who seeks an introduction to the biological, chemical, and physical properties of proteins. Broadly accessible to biophysicists and biochemists, it will be particularly useful to student and professional structural biologists and molecular biophysicists, bioinformaticians and computational biologists, biological chemists (particularly drug designers) and molecular bioengineers. The book begins by introducing the basic principles of protein structure and function. Some readers will be familiar with aspects of this, but the authors build up a more quantitative approach than their competitors. Emphasizing concepts and theory rather than experimental techniques, the book shows how proteins can be analyzed using the disciplines of elementary statistical mechanics, energetics, and kinetics. These chapters illuminate how proteins attain biologically active states and the properties of those states. The book ends with a synopsis the roles of computational biology and bioinformatics in protein science.


Computational Methods for Protein Folding, Volume 120

Computational Methods for Protein Folding, Volume 120

Author: Richard A. Friesner

Publisher: John Wiley & Sons

Published: 2004-04-07

Total Pages: 544

ISBN-13: 0471465232

DOWNLOAD EBOOK

Since the first attempts to model proteins on a computer began almost thirty years ago, our understanding of protein structure and dynamics has dramatically increased. Spectroscopic measurement techniques continue to improve in resolution and sensitivity, allowing a wealth of information to be obtained with regard to the kinetics of protein folding and unfolding, and complementing the detailed structural picture of the folded state. Concurrently, algorithms, software, and computational hardware have progressed to the point where both structural and kinetic problems may be studied with a fair degree of realism. Despite these advances, many major challenges remain in understanding protein folding at both the conceptual and practical levels. Computational Methods for Protein Folding seeks to illuminate recent advances in computational modeling of protein folding in a way that will be useful to physicists, chemists, and chemical physicists. Covering a broad spectrum of computational methods and practices culled from a variety of research fields, the editors present a full range of models that, together, provide a thorough and current description of all aspects of protein folding. A valuable resource for both students and professionals in the field, the book will be of value both as a cutting-edge overview of existing information and as a catalyst for inspiring new studies. Computational Methods for Protein Folding is the 120th volume in the acclaimed series Advances in Chemical Physics, a compilation of scholarly works dedicated to the dissemination of contemporary advances in chemical physics, edited by Nobel Prize-winner Ilya Prigogine.