Papers of a symposium (see title) held in Cincinnati, OH, April, 1987. On methods for relaxation of undesirable residual stresses, i.e., cold working and vibratory stress relief, also treats unintentional relaxation of residual stress by cyclic stresses encountered in service. Annotation copyrighted by Book News, Inc., Portland, OR
This book describes the fundamentals of residual stresses in friction stir welding and reviews the data reported for various materials. Residual stresses produced during manufacturing processes lead to distortion of structures. It is critical to understand and mitigate residual stresses. From the onset of friction stir welding, claims have been made about the lower magnitude of residual stresses. The lower residual stresses are partly due to lower peak temperature and shorter time at temperature during friction stir welding. A review of residual stresses that result from the friction stir process and strategies to mitigate it have been presented. Friction stir welding can be combined with additional in-situ and ex-situ manufacturing steps to lower the final residual stresses. Modeling of residual stresses highlights the relationship between clamping constraint and development of distortion. For many applications, management of residual stresses can be critical for qualification of component/structure. - Reviews magnitude of residual stresses in various metals and alloys - Discusses mitigation strategies for residual stresses during friction stir welding - Covers fundamental origin of residual stresses and distortion
The Army Materials and Mechanics Research Center in coop eration with the Materials Science Group of the Department of Chemical Engineering and Materials Science of Syracuse University has been conducting the Annual Sagamore Army Materials Research Conference since 1954. The specific purpose of these conferences has been to bring together scientists and engineers from academic institutions, industry and government who are uniquely qualified to explore in depth a subject of importance to the Department of Defense, the Army and the scientific community. These proceedings, entitled RESIDUAL STRESS AND STRESS RELAXATION, address the nature of residual stresses and their measurements, the sources of residual stress, stress relaxation, sub-critical crack growth in the presence of residual stress, residual stresses and properties, and research in progress. We wish to acknowledge the assistance of Mr. Dan McNaught of the Army Materials and Mechanics Research Center and Mr. Robert J. Sell and Helen Brown DeMascio of Syracuse University throughout the stages of the conference planning and finally the publication of the book. The continued active interest and support of these conferences by Dr. E. Wright, Director of the Army Materials and Mechanics Research Center, is appreciated.
The Springer Handbook of Experimental Solid Mechanics documents both the traditional techniques as well as the new methods for experimental studies of materials, components, and structures. The emergence of new materials and new disciplines, together with the escalating use of on- and off-line computers for rapid data processing and the combined use of experimental and numerical techniques have greatly expanded the capabilities of experimental mechanics. New exciting topics are included on biological materials, MEMS and NEMS, nanoindentation, digital photomechanics, photoacoustic characterization, and atomic force microscopy in experimental solid mechanics. Presenting complete instructions to various areas of experimental solid mechanics, guidance to detailed expositions in important references, and a description of state-of-the-art applications in important technical areas, this thoroughly revised and updated edition is an excellent reference to a widespread academic, industrial, and professional engineering audience.
Residual stresses are always introduced in materials when they are produced, or when they undergo non-uniform plastic deformation during use. The circumstances that can cause residual stresses are therefore numerous. Residual stresses exist in all materials and, depending on their distribution, can playa beneficial role (for example, compressive surface stress) or have a catastrophic effect, especially on fatigue behaviour and corrosion properties. The subject of residual stresses took form around 1970 with the development of methods to measure macroscopic deformations during the machining of materials or on an atomic scale by X-ray diffraction. These techniques have made considerable progress in the last 20 years. The meetings organized in several countries (Germany, France, Japan, etc. ) have largely contributed to this progress, aided by the numerous exchanges of information and knowledge to which they have given rise. Studies of the formation of residual stresses began more slowly, but have progressed with the emergence of increasingly realistic models of materials behaviour and with access to ever more powerful codes for numerical calculations. Two successive meetings for discussing this topic have been held in Europe. The first, held in 1982 in Nancy (France), consisted of 30 participants from 5 countries. The second was held in Linkoping (Sweden) in 1984, with 80 participants of 16 nationalities. It was decided to hold a first International Conference, ICRS, to address all aspects of the problem. Held in 1986 in Garmisch-Partenkirschen (FRG), it was an assembly of neady 300 participants from 21 countries.
Additive manufacturing (AM) of parts using a layer by layer approach has seen a rapid increase in application for production of net shape or near-net shape complex parts, especially in the field of aerospace, automotive, etc. Due to the superiority of manufacturing complex shapes with ease in comparison to the conventional methods, interest in these kinds of processes has increased. Among various methods in AM, laser powder bed fusion (LPBF) is one of the most widely used techniques to produce metallic components. As in all manufacturing processes, residual stress (RS) generation during manufacturing is a relevant issue for the AM process. RS in AM are generated due to a high thermal gradient between subsequent layers. The impact of residual stresses can be significant for the mechanical integrity of the built parts and understanding the generation of RS and the effect of AM process parameters is therefore important for a broader implementation of AM techniques. The work presented in this licentiate thesis aims to investigate the influence of build orientation on the RS distribution in AM parts. For this purpose, L-shaped Inconel 718 parts were printed by LPBF in three different orientations, 0°, 45°, and 90°, respectively. Inconel 718 was selected because it is a superalloy widely used for making gas turbine components. In addition, IN718 has in general good weldability which renders it a good material for additive manufacturing. Residual stress distributions in the parts removed from the build plate were measured using neutron diffraction technique. A simple finite element model was developed to predict the residual stresses and the effect of RS relaxation due to the separation of the parts and build plate. The trend of residual stress distribution predicted was in good agreement with experimental results. In general, compressive RS at the part center and tensile RS near the surface were found. However, while the part printed in 0° orientation had the least amount of RS in all three principal directions of part, the part built in 90° orientation possessed the highest amount of RS in both compression and tension. The study has shown that residual stress distributions in the parts are strongly dependent on the building process. Further, it has shown that the relaxation of RS associated with the removal of the parts from the build plate after printing has a great impact on the final distribution of residual stress in the parts. These results can be used as guidelines for choosing the orientations of the part during printing.
This book describes the theory and practice of the Hole-Drilling Method for measuring residual stresses in engineering components. Such measurements are important because residual stresses have a "hidden" character because they exist locked-in within a material, independent of any external load. These stresses are typically created during component manufacture, for example, during welding, casting, or forming. Because of their hidden nature, residual stresses are difficult to measure and consequently are often ignored. However, they directly add to loading stresses and can cause catastrophic failure if not properly included during engineering design. Thus, there is an urgent need to be able to identify and measure residual stresses conveniently and reliably. The Hole-Drilling Method provides an adaptable and well-proven method for measuring residual stresses in a wide range of materials and component types. It is convenient to use and gives reliable results. Because of the hidden nature of residual stresses, the measurement method must necessarily be indirect, thus, additional care and conceptual understanding are necessary to achieve successful results. This book provides a practical introduction to the Hole-Drilling Method, starting from its historical roots and going on to focus on its modern practice. The various chapters describe the nature of residual stresses, the principle of hole-drilling measurements, procedures and guidance on how to make successful measurements, and effective mathematical procedures for stress computation and analysis. The book is intended for practitioners who need to make residual stress measurements either occasionally or routinely, for practicing engineers, for researchers, and for graduate engineering and science students.
As a fabrication technology, welding presents a number of technical challenges to the designer, manufacturer, and end-user of the welded structures. Both weld residual stress and distortion can significantly impair the performance and reliability of the welded structures. They must be properly dealt with during design, fabrication, and in-service use of the welded structures. There have been many significant and exciting developments on the subject in the past ten to fifteen years. Measurement techniques have been improved significantly. More importantly, the development of computational welding mechanics methods has been phenomenal. The progresses in the last decade or so have not only greatly expanded our fundamental understanding of the processes and mechanisms of residual stress and distortion during welding, but also have provided powerful tools to quantitatively determine the detailed residual stress and distortion information for a given welded structure. New techniques for effective residual stress and distortion mitigations and controls have also been applied in different industry sectors. Processes and Mechanisms of Welding Residual Stress and Distortion provides a comprehensive summary on the developments in the subject. It outlines theoretical treatments on heat transfer, solid mechanics and materials behavior that are essential for understanding and determining the welding residual stress and distortion. The approaches for computational methods and analysis methodology are described so that non specialists can follow them. There are chapters devoted to the discussion of various techniques for control and mitigation of residual stress and distortion, and residual stress and distortion results for various typical welded structures are provided. The second half of the book looks at case studies and practical solutions and provides insights into the techniques, challenges, limitations and future trends of each application. This book will not only be useful for advanced analysis of the subject, but also provide sufficient examples and practical solutions for welding engineers. With a panel of leading experts this authoritative book will be a valuable resource for welding engineers and designers as well as academics working in the fields of structural and mechanical engineering.