From the reviews: "The book should be acquired by all libraries with an interest in glass science and applications...the title will endure for many years as the standard work on the properties of optical glass." Optical Systems Engineering
Fundamentals of Inorganic Glasses, Third Edition, is a comprehensive reference on the field of glass science and engineering that covers numerous, significant advances. This new edition includes the most recent advances in glass physics and chemistry, also discussing groundbreaking applications of glassy materials. It is suitable for upper level glass science courses and professional glass scientists and engineers at industrial and government labs. Fundamental concepts, chapter-ending problem sets, an emphasis on key ideas, and timely notes on suggested readings are all included. The book provides the breadth required of a comprehensive reference, offering coverage of the composition, structure and properties of inorganic glasses. - Clearly develops fundamental concepts and the basics of glass science and glass chemistry - Provides a comprehensive discussion of the composition, structure and properties of inorganic glasses - Features a discussion of the emerging applications of glass, including applications in energy, environment, pharmaceuticals, and more - Concludes chapters with problem sets and suggested readings to facilitate self-study
Seven independently-authored chapters consider selected topics related to the rapidly growing interest in optical glass among scientists who were hitherto satisfied with opaque ceramics. They cover oxide, halide, and photochromic glasses; nonlinear optical properties; optical basicity; optical fiber
For more than 400 years, optical glass has provided mankind with a window into both the hidden microcosm and vast outer cosmos of the known universe, transforming philosophy, science, and engineering through its visage and, thus, shaping modern civilization. Its high transmittance, homogeneity, and precisely defined light refraction properties are the preconditions for highly resolved true-color imaging, making it an intrinsic component of technology in general. From consumer products, such as cameras and binoculars, to microscopes and telescopes-the most essential tools of research in many fields-the role of optical glass is integral to the very foundations of modern science and industry.
This book is the first to provide a comprehensive introduction to the synthesis, optical properties, and photonics applications of tellurite glasses. The book begins with an overview of tellurite glasses, followed by expert chapters on synthesis, properties, and state-of-the-art applications ranging from laser glass, optical fibers, and optical communications through color tuning, plasmonics, supercontinuum generation, and other photonic devices. The book provides in-depth information on the the structural, linear, and non-linear optical properties of tellurite glasses and their implications for device development. Real-world examples give the reader valuable insight into the applications of tellurite glass. A detailed discussion of glass production methods, including raw materials and melting and refining oxide- and fluoro-tellurite glasses, is also included. The book features an extensive reference list for further reading. This highly readable and didactic text draws on chemical composition, glass science, quantum mechanics, and electrodynamics. It is suitable for both advanced undergraduate and graduate students as well as practicing researchers.
This new edition features numerous updates and additions. Especially 4 new chapters on Fiber Optics, Integrated Optics, Frequency Combs and Interferometry reflect the changes since the first edition. In addition, major complete updates for the chapters: Optical Materials and Their Properties, Optical Detectors, Nanooptics, and Optics far Beyond the Diffraction Limit. Features Contains over 1000 two-color illustrations. Includes over 120 comprehensive tables with properties of optical materials and light sources. Emphasizes physical concepts over extensive mathematical derivations. Chapters with summaries, detailed index Delivers a wealth of up-to-date references.
From the reviews: "The book should be acquired by all libraries with an interest in glass science and applications...the title will endure for many years as the standard work on the properties of optical glass." Optical Systems Engineering
This volume is a compilation of data on the properties of glasses. The authors have critically examined and correlated the most reliable data on the properties of multicomponent commercial silicate glasses, vitreous silica, and binary and ternary laboratory glasses. Thermodynamic, thermal, mechanical, electrical, and transport properties are covered. Measurement methods and appropriate theories are also discussed.
This book provides a concise and inexpensive introduction for an undergraduate course in glass science and technology. The level of the book has deliberately been maintained at the introductory level to avoid confusion of the student by inclusion of more advanced material, and is unique in that its text is limited to the amount suitable for a one term course for students in materials science, ceramics or inorganic chemistry. The contents cover the fundamental topics of importance in glass science and technology, including glass formation, crystallization, phase separation and structure of glasses. Additional chapters discuss the most important properties of glasses, including discussion of physical, optical, electrical, chemical and mechanical properties. A final chapter provides an introduction to a number of methods used to form technical glasses, including glass sheet, bottles, insulation fibre, optical fibres and other common commercial products. In addition, the book contains discussion of the effects of phase separation and crystallization on the properties of glasses, which is neglected in other texts. Although intended primarily as a textbook, Introduction to Glass Science and Technology will also be invaluable to the engineer or scientist who desires more knowledge regarding the formation, properties and production of glass.
Despite the increased understanding we now have of materials and their properties, selecting materials for a given application remains a daunting, non-trivial task. The volume of data, inadequacies in the data, and the tens of thousands of materials to choose from can overwhelm the would-be user. The Materials Selector addresses all the problems faced by materials scientists and engineers. In its three volumes you will find the properties, performance, and processability of metals, plastics, carbon and graphite, glasses, ceramics, polymerics, and composites. The characteristics and comparative economics of the manufacturing routes that convert these materials into engineering components.