Proper Forcing

Proper Forcing

Author: S. Shelah

Publisher: Springer

Published: 2013-12-11

Total Pages: 528

ISBN-13: 3662215438

DOWNLOAD EBOOK

These notes can be viewed and used in several different ways, each has some justification, a collection of papers, a research monograph or a text book. The author has lectured variants of several of the chapters several times: in University of California, Berkeley, 1978, Ch. III , N, V in Ohio State Univer sity in Columbus, Ohio 1979, Ch. I,ll and in the Hebrew University 1979/80 Ch. I, II, III, V, and parts of VI. Moreover Azriel Levi, who has a much better name than the author in such matters, made notes from the lectures in the Hebrew University, rewrote them, and they ·are Chapters I, II and part of III , and were somewhat corrected and expanded by D. Drai, R. Grossberg and the author. Also most of XI §1-5 were lectured on and written up by Shai Ben David. Also our presentation is quite self-contained. We adopted an approach I heard from Baumgartner and may have been used by others: not proving that forcing work, rather take axiomatically that it does and go ahead to applying it. As a result we assume only knowledge of naive set theory (except some iso lated points later on in the book).


Proper and Improper Forcing

Proper and Improper Forcing

Author: Saharon Shelah

Publisher: Cambridge University Press

Published: 2017-03-23

Total Pages: 1069

ISBN-13: 1107168368

DOWNLOAD EBOOK

This book presents the theory of proper forcing and its relatives from the beginning. No prior knowledge of forcing is required.


Author:

Publisher: World Scientific

Published:

Total Pages: 1191

ISBN-13:

DOWNLOAD EBOOK


Set Theory and Its Applications

Set Theory and Its Applications

Author: Liljana Babinkostova

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 346

ISBN-13: 0821848127

DOWNLOAD EBOOK

This book consists of several survey and research papers covering a wide range of topics in active areas of set theory and set theoretic topology. Some of the articles present, for the first time in print, knowledge that has been around for several years and known intimately to only a few experts. The surveys bring the reader up to date on the latest information in several areas that have been surveyed a decade or more ago. Topics covered in the volume include combinatorial and descriptive set theory, determinacy, iterated forcing, Ramsey theory, selection principles, set-theoretic topology, and universality, among others. Graduate students and researchers in logic, especially set theory, descriptive set theory, and set-theoretic topology, will find this book to be a very valuable reference.


Proceedings Of The International Congress Of Mathematicians 2010 (Icm 2010) (In 4 Volumes) - Vol. I: Plenary Lectures And Ceremonies, Vols. Ii-iv: Invited Lectures

Proceedings Of The International Congress Of Mathematicians 2010 (Icm 2010) (In 4 Volumes) - Vol. I: Plenary Lectures And Ceremonies, Vols. Ii-iv: Invited Lectures

Author: Rajendra Bhatia

Publisher: World Scientific

Published: 2011-06-06

Total Pages: 4137

ISBN-13: 9814462934

DOWNLOAD EBOOK

ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.


Handbook of Set Theory

Handbook of Set Theory

Author: Matthew Foreman

Publisher: Springer Science & Business Media

Published: 2009-12-10

Total Pages: 2200

ISBN-13: 1402057644

DOWNLOAD EBOOK

Numbers imitate space, which is of such a di?erent nature —Blaise Pascal It is fair to date the study of the foundation of mathematics back to the ancient Greeks. The urge to understand and systematize the mathematics of the time led Euclid to postulate axioms in an early attempt to put geometry on a ?rm footing. With roots in the Elements, the distinctive methodology of mathematics has become proof. Inevitably two questions arise: What are proofs? and What assumptions are proofs based on? The ?rst question, traditionally an internal question of the ?eld of logic, was also wrestled with in antiquity. Aristotle gave his famous syllogistic s- tems, and the Stoics had a nascent propositional logic. This study continued with ?ts and starts, through Boethius, the Arabs and the medieval logicians in Paris and London. The early germs of logic emerged in the context of philosophy and theology. The development of analytic geometry, as exempli?ed by Descartes, ill- tratedoneofthedi?cultiesinherentinfoundingmathematics. Itisclassically phrased as the question ofhow one reconciles the arithmetic with the geom- ric. Arenumbers onetypeofthingand geometricobjectsanother? Whatare the relationships between these two types of objects? How can they interact? Discovery of new types of mathematical objects, such as imaginary numbers and, much later, formal objects such as free groups and formal power series make the problem of ?nding a common playing ?eld for all of mathematics importunate. Several pressures made foundational issues urgent in the 19th century.


Logic and Its Applications

Logic and Its Applications

Author: Kamal Lodaya

Publisher: Springer

Published: 2012-12-22

Total Pages: 267

ISBN-13: 3642360394

DOWNLOAD EBOOK

Edited in collaboration with FoLLI, the Association of Logic, Language and Information, this book constitutes the refereed proceedings of the 5th Indian Conference on Logic and Its Applications, ICLA 2013, held in Chennai, India, in January 2013. The 15 revised full papers presented together with 7 invited talks were carefully reviewed and selected from numerous submissions. The papers cover the topics related to pure and applied logic, foundations and philosophy of mathematics and the sciences, set theory, model theory, proof theory, areas of theoretical computer science, artificial intelligence and other disciplines which are of direct interest to mathematical and philosophical logic.


Logic and Its Applications

Logic and Its Applications

Author: R. Ramanujam

Publisher: Springer

Published: 2009-01-07

Total Pages: 278

ISBN-13: 3540927018

DOWNLOAD EBOOK

Edited in collaboration with FoLLI, the Association of Logic, Language and Information, this book constitutes the 5th volume of the FoLLI LNAI subline. It contains the refereed proceedings of the Third Indian Conference on Logic and Its Applications, ICLA 2009, held in Chennai, India, in January 2009. The 12 revised full papers presented together with 7 invited lectures were carefully reviewed and selected from numerous submissions. The papers present current research in all aspects of formal logic. They address in detail: algebraic logic and set theory, combinatorics and philosophical logic, modal logics with applications to computer science and game theory, and connections between ancient logic systems and modern systems.


Models, Algebras, and Proofs

Models, Algebras, and Proofs

Author: Xavier Caicedo

Publisher: CRC Press

Published: 2021-02-27

Total Pages: 471

ISBN-13: 1000657302

DOWNLOAD EBOOK

Contains a balanced account of recent advances in set theory, model theory, algebraic logic, and proof theory, originally presented at the Tenth Latin American Symposium on Mathematical Logic held in Bogata, Columbia. Traces new interactions among logic, mathematics, and computer science. Features original research from over 30 well-known experts.


Set Theory

Set Theory

Author: Carlos A. di Prisco

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 229

ISBN-13: 9401589887

DOWNLOAD EBOOK

During the past 25 years, set theory has developed in several interesting directions. The most outstanding results cover the application of sophisticated techniques to problems in analysis, topology, infinitary combinatorics and other areas of mathematics. This book contains a selection of contributions, some of which are expository in nature, embracing various aspects of the latest developments. Amongst topics treated are forcing axioms and their applications, combinatorial principles used to construct models, and a variety of other set theoretical tools including inner models, partitions and trees. Audience: This book will be of interest to graduate students and researchers in foundational problems of mathematics.