This book presents a method of establishing explicit solutions to classical problems of calculating the best lower and upper mean-variance bounds. The following families of distributions are taken into account: arbitrary, symmetric, symmetric unimodal, and U-shaped. The book is addressed to students, researchers, and practitioners in statistics and applied probability. Most of the results are recent, and a significant part of them has not been published yet. Numerous open problems are stated in the text.
Applied mathematics connects the mathematical theory to the reality by solving real world problems and shows the power of the science of mathematics, greatly improving our lives. Therefore it plays a very active and central role in the scientific world.This volume contains 14 high quality survey articles — incorporating original results and describing the main research activities of contemporary applied mathematics — written by top people in the field. The articles have been written in review style, so that the researcher can have a quick and thorough view of what is happening in the main subfields of applied mathematics.
Applied mathematics connects the mathematical theory to the reality by solving real world problems and shows the power of the science of mathematics, greatly improving our lives. Therefore it plays a very active and central role in the scientific world. This volume contains 14 high quality survey articles -- incorporating original results and describing the main research activities of contemporary applied mathematics -- written by top people in the field. The articles have been written in review style, so that the researcher can have a quick and thorough view of what is happening in the main subfields of applied mathematics.
This book presents the latest research on the statistical analysis of functional, high-dimensional and other complex data, addressing methodological and computational aspects, as well as real-world applications. It covers topics like classification, confidence bands, density estimation, depth, diagnostic tests, dimension reduction, estimation on manifolds, high- and infinite-dimensional statistics, inference on functional data, networks, operatorial statistics, prediction, regression, robustness, sequential learning, small-ball probability, smoothing, spatial data, testing, and topological object data analysis, and includes applications in automobile engineering, criminology, drawing recognition, economics, environmetrics, medicine, mobile phone data, spectrometrics and urban environments. The book gathers selected, refereed contributions presented at the Fifth International Workshop on Functional and Operatorial Statistics (IWFOS) in Brno, Czech Republic. The workshop was originally to be held on June 24-26, 2020, but had to be postponed as a consequence of the COVID-19 pandemic. Initiated by the Working Group on Functional and Operatorial Statistics at the University of Toulouse in 2008, the IWFOS workshops provide a forum to discuss the latest trends and advances in functional statistics and related fields, and foster the exchange of ideas and international collaboration in the field.
This manuscript attempts to present in an organised manner characterisations and bounds of Record Values. There are several interesting articles presented in various journals and in some books on characterisations and bounds of Record Values. The aim is to provide a through presentation of these topics in this book. The book will be helpful to any one considering an independent study for characterisations and bounds of record values. The book presents the essential topics on the bounds for expectations of records and characterisations of probability distributions via record statistics.
Government policy questions and media planning tasks may be answered by this data set. It covers a wide range of different aspects of statistical matching that in Europe typically is called data fusion. A book about statistical matching will be of interest to researchers and practitioners, starting with data collection and the production of public use micro files, data banks, and data bases. People in the areas of database marketing, public health analysis, socioeconomic modeling, and official statistics will find it useful.
Covering statistical analysis on the two special manifolds, the Stiefel manifold and the Grassmann manifold, this book is designed as a reference for both theoretical and applied statisticians. It will also be used as a textbook for a graduate course in multivariate analysis. It is assumed that the reader is familiar with the usual theory of univariate statistics and a thorough background in mathematics, in particular, knowledge of multivariate calculation techniques.
This volume provides an up-to-date coverage of the theory and applications of ordered random variables and their functions. Furthermore, it develops the distribution theory of OS systematically. Applications include procedures for the treatment of outliers and other data analysis techniques. Even when chapter and section headings are the same as in OSII, there are appreciable changes, mostly additions, with some obvious deletions. Parts of old Ch. 7, for example, are prime candidates for omission. Appendices are designed to help collate tables, computer algorithms, and software, as well as to compile related monographs on the subject matter. Extensive exercise sets will continue, many of them replaced by newer ones.
This account of recent works on weakly dependent, long memory and multifractal processes introduces new dependence measures for studying complex stochastic systems and includes other topics such as the dependence structure of max-stable processes.