Progress in Commutative Algebra 2

Progress in Commutative Algebra 2

Author: Christopher Francisco

Publisher: Walter de Gruyter

Published: 2012-04-26

Total Pages: 329

ISBN-13: 311027860X

DOWNLOAD EBOOK

This is the second of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes present current trends in two of the most active areas of commutative algebra: non-noetherian rings (factorization, ideal theory, integrality), and noetherian rings (the local theory, graded situation, and interactions with combinatorics and geometry). This volume contains surveys on aspects of closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a nice guide to closure operations by Epstein, but also contains an article on test ideals by Schwede and Tucker and one by Enescu which discusses the action of the Frobenius on finite dimensional vector spaces both of which are related to tight closure. Finiteness properties of rings and modules or the lack of them come up in all aspects of commutative algebra. However, in the study of non-noetherian rings it is much easier to find a ring having a finite number of prime ideals. The editors have included papers by Boynton and Sather-Wagstaff and by Watkins that discuss the relationship of rings with finite Krull dimension and their finite extensions. Finiteness properties in commutative group rings are discussed in Glaz and Schwarz's paper. And Olberding's selection presents us with constructions that produce rings whose integral closure in their field of fractions is not finitely generated. The final three papers in this volume investigate factorization in a broad sense. The first paper by Celikbas and Eubanks-Turner discusses the partially ordered set of prime ideals of the projective line over the integers. The editors have also included a paper on zero divisor graphs by Coykendall, Sather-Wagstaff, Sheppardson and Spiroff. The final paper, by Chapman and Krause, concerns non-unique factorization.


Advances in Commutative Algebra

Advances in Commutative Algebra

Author: Ayman Badawi

Publisher: Springer

Published: 2019-04-11

Total Pages: 280

ISBN-13: 9811370281

DOWNLOAD EBOOK

This book highlights the contributions of the eminent mathematician and leading algebraist David F. Anderson in wide-ranging areas of commutative algebra. It provides a balance of topics for experts and non-experts, with a mix of survey papers to offer a synopsis of developments across a range of areas of commutative algebra and outlining Anderson’s work. The book is divided into two sections—surveys and recent research developments—with each section presenting material from all the major areas in commutative algebra. The book is of interest to graduate students and experienced researchers alike.


Progress in commutative algebra: Closures, finiteness, and factorization

Progress in commutative algebra: Closures, finiteness, and factorization

Author: Sean Sather-Wagstaff

Publisher: Walter de Gruyter

Published: 2012

Total Pages: 315

ISBN-13: 9783110278590

DOWNLOAD EBOOK

This is the second of two volumes of a state-of-the-art survey article collection which emanates from three commutative algebra sessions atthe 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. The current trends in two of the most active areas of commutative algebra are presented: non-noetherian rings (factorization, ideal theory, integrality), advances from the homological study of noetherian rings (the local theory, graded situation and its interactions with combinatorics and geometry). This second volume discusses closures, decompositions, and factorization.


Rings, Modules, and Closure Operations

Rings, Modules, and Closure Operations

Author: Jesse Elliott

Publisher: Springer Nature

Published: 2019-11-30

Total Pages: 490

ISBN-13: 3030244016

DOWNLOAD EBOOK

This book presents a systematic exposition of the various applications of closure operations in commutative and noncommutative algebra. In addition to further advancing multiplicative ideal theory, the book opens doors to the various uses of closure operations in the study of rings and modules, with emphasis on commutative rings and ideals. Several examples, counterexamples, and exercises further enrich the discussion and lend additional flexibility to the way in which the book is used, i.e., monograph or textbook for advanced topics courses.


Commutative Algebra

Commutative Algebra

Author: Irena Peeva

Publisher: Springer Science & Business Media

Published: 2013-02-01

Total Pages: 705

ISBN-13: 1461452929

DOWNLOAD EBOOK

This contributed volume brings together the highest quality expository papers written by leaders and talented junior mathematicians in the field of Commutative Algebra. Contributions cover a very wide range of topics, including core areas in Commutative Algebra and also relations to Algebraic Geometry, Algebraic Combinatorics, Hyperplane Arrangements, Homological Algebra, and String Theory. The book aims to showcase the area, especially for the benefit of junior mathematicians and researchers who are new to the field; it will aid them in broadening their background and to gain a deeper understanding of the current research in this area. Exciting developments are surveyed and many open problems are discussed with the aspiration to inspire the readers and foster further research.


Groups, Modules, and Model Theory - Surveys and Recent Developments

Groups, Modules, and Model Theory - Surveys and Recent Developments

Author: Manfred Droste

Publisher: Springer

Published: 2017-06-02

Total Pages: 493

ISBN-13: 331951718X

DOWNLOAD EBOOK

This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference “New Pathways between Group Theory and Model Theory,” which took place February 1-4, 2016, in Mülheim an der Ruhr, Germany, in honor of the editors’ colleague Rüdiger Göbel. This publication is dedicated to Professor Göbel, who passed away in 2014. He was one of the leading experts in Abelian group theory.


Arithmetical Rings and Endomorphisms

Arithmetical Rings and Endomorphisms

Author: Askar Tuganbaev

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-06-04

Total Pages: 176

ISBN-13: 3110659824

DOWNLOAD EBOOK

This book offers a comprehensive account of not necessarily commutative arithmetical rings, examining structural and homological properties of modules over arithmetical rings and summarising the interplay between arithmetical rings and other rings, whereas modules with extension properties of submodule endomorphisms are also studied in detail. Graduate students and researchers in ring and module theory will find this book particularly valuable.


Graphs from Rings

Graphs from Rings

Author: David F. Anderson

Publisher: Springer Nature

Published: 2021-10-31

Total Pages: 548

ISBN-13: 3030884104

DOWNLOAD EBOOK

This book gives an overview of research on graphs associated with commutative rings. The study of the connections between algebraic structures and certain graphs, especially finite groups and their Cayley graphs, is a classical subject which has attracted a lot of interest. More recently, attention has focused on graphs constructed from commutative rings, a field of study which has generated an extensive amount of research over the last three decades. The aim of this text is to consolidate this large body of work into a single volume, with the intention of encouraging interdisciplinary research between algebraists and graph theorists, using the tools of one subject to solve the problems of the other. The topics covered include the graphical and topological properties of zero-divisor graphs, total graphs and their transformations, and other graphs associated with rings. The book will be of interest to researchers in commutative algebra and graph theory and anyone interested in learning about the connections between these two subjects.


Elementary Theory of Groups and Group Rings, and Related Topics

Elementary Theory of Groups and Group Rings, and Related Topics

Author: Paul Baginski

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-02-10

Total Pages: 272

ISBN-13: 311063838X

DOWNLOAD EBOOK

This proceedings volume documents the contributions presented at the conference held at Fairfield University and at the Graduate Center, CUNY in 2018 celebrating the New York Group Theory Seminar, in memoriam Gilbert Baumslag, and to honor Benjamin Fine and Anthony Gaglione. It includes several expert contributions by leading figures in the group theory community and provides a valuable source of information on recent research developments.


Algebra and Its Applications

Algebra and Its Applications

Author: Mohammad Ashraf

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-08-06

Total Pages: 340

ISBN-13: 3110542404

DOWNLOAD EBOOK

This volume showcases mostly the contributions presented at the International Conference in Algebra and Its Applications held at the Aligarh Muslim University, Aligarh, India during November 12-14, 2016. Refereed by renowned experts in the field, this wide-ranging collection of works presents the state of the art in the field of algebra and its applications covering topics such as derivations in rings, category theory, Baer module theory, coding theory, graph theory, semi-group theory, HNP rings, Leavitt path algebras, generalized matrix algebras, Nakayama conjecture, near ring theory and lattice theory. All of the contributing authors are leading international academicians and researchers in their respective fields. Contents On Structure of ∗-Prime Rings with Generalized Derivation A characterization of additive mappings in rings with involution| Skew constacyclic codes over Fq + vFq + v2Fq Generalized total graphs of commutative rings: A survey Differential conditions for which near-rings are commutative rings Generalized Skew Derivations satisfying the second Posner’s theorem on Lie ideals Generalized Skew-Derivations on Lie Ideals in Prime Rings On generalized derivations and commutativity of prime rings with involution On (n, d)-Krull property in amalgamated algebra Pure ideals in ordered Γ-semigroups Projective ideals of differential polynomial rings over HNP rings Additive central m-power skew-commuting maps on semiprime rings A Note on CESS-Lattices Properties Inherited by Direct Sums of Copies of a Module Modules witnessing that a Leavitt path algebra is directly infinite Inductive Groupoids and Normal Categories of Regular Semigroups Actions of generalized derivations in Rings and Banach Algebras Proper Categories and Their Duals On Nakayama Conjecture and related conjectures-Review On construction of global actions for partial actions On 2-absorbing and Weakly 2-absorbing Ideals in Product Lattices Separability in algebra and category theory Annihilators of power values of generalized skew derivations on Lie ideals Generalized derivations on prime rings with involution