This expansive reference provides readers with the broadest available single-volume coverage of leading-edge advances in the development and optimization of clean energy technologies. From innovative biofuel feed stocks and processing techniques, to novel solar materials with record-breaking efficiencies, remote-sensing for offshore wind turbines to breakthroughs in high performance PEM fuel cell electrode manufacturing, phase change materials in green buildings to bio sorption of pharmaceutical pollutants, the myriad exciting developments in green technology described in this book will provide inspiration and information to researchers, engineers and students working in sustainability around the world.
NEW YORK TIMES BESTSELLER NATIONAL BESTSELLER In this urgent, singularly authoritative book, Bill Gates sets out a wide-ranging, practical--and accessible--plan for how the world can get to zero greenhouse gas emissions in time to avoid an irreversible climate catastrophe. Bill Gates has spent a decade investigating the causes and effects of climate change. With the help and guidance of experts in the fields of physics, chemistry, biology, engineering, political science and finance, he has focused on exactly what must be done in order to stop the planet's slide toward certain environmental disaster. In this book, he not only gathers together all the information we need to fully grasp how important it is that we work toward net-zero emissions of greenhouse gases but also details exactly what we need to do to achieve this profoundly important goal. He gives us a clear-eyed description of the challenges we face. He describes the areas in which technology is already helping to reduce emissions; where and how the current technology can be made to function more effectively; where breakthrough technologies are needed, and who is working on these essential innovations. Finally, he lays out a concrete plan for achieving the goal of zero emissions--suggesting not only policies that governments should adopt, but what we as individuals can do to keep our government, our employers and ourselves accountable in this crucial enterprise. As Bill Gates makes clear, achieving zero emissions will not be simple or easy to do, but by following the guidelines he sets out here, it is a goal firmly within our reach.
A comprehensive account of how energy has shaped society throughout history, from pre-agricultural foraging societies through today's fossil fuel–driven civilization. "I wait for new Smil books the way some people wait for the next 'Star Wars' movie. In his latest book, Energy and Civilization: A History, he goes deep and broad to explain how innovations in humans' ability to turn energy into heat, light, and motion have been a driving force behind our cultural and economic progress over the past 10,000 years. —Bill Gates, Gates Notes, Best Books of the Year Energy is the only universal currency; it is necessary for getting anything done. The conversion of energy on Earth ranges from terra-forming forces of plate tectonics to cumulative erosive effects of raindrops. Life on Earth depends on the photosynthetic conversion of solar energy into plant biomass. Humans have come to rely on many more energy flows—ranging from fossil fuels to photovoltaic generation of electricity—for their civilized existence. In this monumental history, Vaclav Smil provides a comprehensive account of how energy has shaped society, from pre-agricultural foraging societies through today's fossil fuel–driven civilization. Humans are the only species that can systematically harness energies outside their bodies, using the power of their intellect and an enormous variety of artifacts—from the simplest tools to internal combustion engines and nuclear reactors. The epochal transition to fossil fuels affected everything: agriculture, industry, transportation, weapons, communication, economics, urbanization, quality of life, politics, and the environment. Smil describes humanity's energy eras in panoramic and interdisciplinary fashion, offering readers a magisterial overview. This book is an extensively updated and expanded version of Smil's Energy in World History (1994). Smil has incorporated an enormous amount of new material, reflecting the dramatic developments in energy studies over the last two decades and his own research over that time.
This thorough and highly relevant volume examines exergy, energy and the environment in the context of energy systems and applications and as a potential tool for design, analysis, optimization. It further considers their role in minimizing and/or eliminating environmental impacts and providing for sustainable development. In this regard, several key topics ranging from the basics of the thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications are covered.
Exergy, Second Edition deals with exergy and its applications to various energy systems and applications as a potential tool for design, analysis and optimization, and its role in minimizing and/or eliminating environmental impacts and providing sustainable development. In this regard, several key topics ranging from the basics of the thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications are covered as outlined in the contents. - Offers comprehensive coverage of exergy and its applications, along with the most up-to-date information in the area with recent developments - Connects exergy with three essential areas in terms of energy, environment and sustainable development - Provides a number of illustrative examples, practical applications, and case studies - Written in an easy-to-follow style, starting from the basics to advanced systems
Advances in Renewable Energies and Power Technologies: Volume 1: Solar and Wind Energies examines both the theoretical and practical elements of renewable energy sources, such as photovoltaics, solar, photothermal and wind energies. Yahyaoui and a team of expert contributors present the most up-to-date information and analysis on renewable energy generation technologies in this comprehensive resource. Covers the principles and methods of each technology, an analysis of their implementation, management and optimization, and related economic advantages and limitations. Features recent case studies and models of each technology. A valuable resource for anyone working in the renewable energy field or wanting to learn more about theoretical and technological aspects of the most recent inventions and research in the field. - Offers a comprehensive guide to the most advanced contemporary renewable power generation technologies written by a team of top experts - Discusses the energy optimization, control and limitations of each technology, as well as a detailed economic study of the associated costs of implementation and management - Includes global case studies and models to exemplify the technological possibilities and limitations of each power generation method
Design, Analysis and Applications of Renewable Energy Systems covers recent advancements in the study of renewable energy control systems by bringing together diverse scientific breakthroughs on the modeling, control and optimization of renewable energy systems as conveyed by leading energy systems engineering researchers. The book focuses on present novel solutions for many problems in the field, covering modeling, control theorems and the optimization techniques that will help solve many scientific issues for researchers. Multidisciplinary applications are also discussed, along with their fundamentals, modeling, analysis, design, realization and experimental results. This book fills the gaps between different interdisciplinary applications, ranging from mathematical concepts, modeling, and analysis, up to the realization and experimental work. - Presents some of the latest innovative approaches to renewable energy systems from the point-of-view of dynamic modeling, system analysis, optimization, control and circuit design - Focuses on advances related to optimization techniques for renewable energy and forecasting using machine learning methods - Includes new circuits and systems, helping researchers solve many nonlinear problems
Examines four long-term cases of nations shifting to low-carbon energy sources from dependence on fossil fuels, in order to discuss better ways for a nation to make such a transition.
Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.