Progress in Applied Mathematical Modeling

Progress in Applied Mathematical Modeling

Author: Fengshan Yang

Publisher: Nova Publishers

Published: 2008

Total Pages: 386

ISBN-13: 9781600219764

DOWNLOAD EBOOK

This book presents new research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. It includes heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimisation; finite volume, finite element, and boundary element procedures; decision sciences in an industrial and manufacturing context; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.


Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science

Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science

Author: Roderick Melnik

Publisher: Springer

Published: 2017-09-05

Total Pages: 437

ISBN-13: 1493969692

DOWNLOAD EBOOK

This volume is an excellent resource for professionals in various areas of applications of mathematics, modeling, and computational science. It focuses on recent progress and modern challenges in these areas. The volume provides a balance between fundamental theoretical and applied developments, emphasizing the interdisciplinary nature of modern trends and detailing state-of-the-art achievements in Applied Mathematics, Modeling, and Computational Science. The chapters have been authored by international experts in their respective fields, making this book ideal for researchers in academia, practitioners, and graduate students. It can also serve as a reference in the diverse selected areas of applied mathematics, modelling, and computational sciences, and is ideal for interdisciplinary collaborations.


Advances in Applied Mathematics, Modeling, and Computational Science

Advances in Applied Mathematics, Modeling, and Computational Science

Author: Roderick Melnik

Publisher: Springer Science & Business Media

Published: 2012-09-22

Total Pages: 248

ISBN-13: 1461453895

DOWNLOAD EBOOK

The volume presents a selection of in-depth studies and state-of-the-art surveys of several challenging topics that are at the forefront of modern applied mathematics, mathematical modeling, and computational science. These three areas represent the foundation upon which the methodology of mathematical modeling and computational experiment is built as a ubiquitous tool in all areas of mathematical applications. This book covers both fundamental and applied research, ranging from studies of elliptic curves over finite fields with their applications to cryptography, to dynamic blocking problems, to random matrix theory with its innovative applications. The book provides the reader with state-of-the-art achievements in the development and application of new theories at the interface of applied mathematics, modeling, and computational science. This book aims at fostering interdisciplinary collaborations required to meet the modern challenges of applied mathematics, modeling, and computational science. At the same time, the contributions combine rigorous mathematical and computational procedures and examples from applications ranging from engineering to life sciences, providing a rich ground for graduate student projects.


Mathematical Modeling of Natural Phenomena

Mathematical Modeling of Natural Phenomena

Author: Ranis Ibragimov

Publisher:

Published: 2017-12

Total Pages: 0

ISBN-13: 9781536129779

DOWNLOAD EBOOK

Mathematical modeling in the form of differential equations is a branch of applied mathematics that includes topics from physics, engineering, environmental and computer science. The mathematical model is an approximate description of real processes. Mathematical modeling can be thought of as a three step process: 1) Physical situation; 2) Mathematical formulation; 3) Solution by purely operations of the mathematical problem; 4) Physical interpretation of the mathematical solution. Over the centuries, Step 2 took on a life of its own. Mathematics was studied on its own, devoid of any contact with a physical problem; this is known as pure mathematics. Applied mathematics and mathematical modeling deals with all three steps. Improvements of approximations or their extensions to more general situations may increase the complexity of mathematical models significantly. Before the 18th century, applied mathematics and its methods received the close attention of the best mathematicians who were driven by a desire to develop approximate descriptions of natural phenomena. The goal of asymptotic and perturbation methods is to find useful, approximate solutions to difficult problems that arise from the desire to understand a physical process. Exact solutions are usually either impossible to obtain or too complicated to be useful. Approximate, useful solutions are often tested by comparison with experiments or observations rather than by rigorous mathematical methods. Hence, the authors will not be concerned with rigorous proofs in this book. The derivation of approximate solutions can be done in two different ways. First, one can find an approximate set of equations that can be solved, or, one can find an approximate solution of a set of equations. Usually one must do both. Models of natural science show that the possibilities of applying differential equations for solving problems in the disciplines of the natural scientific cycle are quite wide. This book represents a unique blend of the traditional analytical and numerical methods enriched by the authors developments and applications to ocean and atmospheric sciences. The overall viewpoint taken is a theoretical, unified approach to the study of both the atmosphere and the oceans. One of the key features in this book is the combination of approximate forms of the basic mathematical equations of mathematical modeling with careful and precise analysis. The approximations are required to make any progress possible, while precision is needed to make the progress meaningful. This combination is often the most elusive for student to appreciate. This book aims to highlight this issue by means of accurate derivation of mathematical models with precise analysis and MATLAB applications. This book is meant for undergraduate and graduate students interested in applied mathematics, differential equations and mathematical modeling of real world problems. This book might also be interested in experts working in the field of physics concerning the ocean and atmosphere.


Introduction to the Foundations of Applied Mathematics

Introduction to the Foundations of Applied Mathematics

Author: Mark H. Holmes

Publisher: Springer Science & Business Media

Published: 2009-06-18

Total Pages: 477

ISBN-13: 0387877657

DOWNLOAD EBOOK

FOAM. This acronym has been used for over ?fty years at Rensselaer to designate an upper-division course entitled, Foundations of Applied Ma- ematics. This course was started by George Handelman in 1956, when he came to Rensselaer from the Carnegie Institute of Technology. His objective was to closely integrate mathematical and physical reasoning, and in the p- cess enable students to obtain a qualitative understanding of the world we live in. FOAM was soon taken over by a young faculty member, Lee Segel. About this time a similar course, Introduction to Applied Mathematics, was introduced by Chia-Ch’iao Lin at the Massachusetts Institute of Technology. Together Lin and Segel, with help from Handelman, produced one of the landmark textbooks in applied mathematics, Mathematics Applied to - terministic Problems in the Natural Sciences. This was originally published in 1974, and republished in 1988 by the Society for Industrial and Applied Mathematics, in their Classics Series. This textbook comes from the author teaching FOAM over the last few years. In this sense, it is an updated version of the Lin and Segel textbook.


Optimal Transport for Applied Mathematicians

Optimal Transport for Applied Mathematicians

Author: Filippo Santambrogio

Publisher: Birkhäuser

Published: 2015-10-17

Total Pages: 376

ISBN-13: 3319208284

DOWNLOAD EBOOK

This monograph presents a rigorous mathematical introduction to optimal transport as a variational problem, its use in modeling various phenomena, and its connections with partial differential equations. Its main goal is to provide the reader with the techniques necessary to understand the current research in optimal transport and the tools which are most useful for its applications. Full proofs are used to illustrate mathematical concepts and each chapter includes a section that discusses applications of optimal transport to various areas, such as economics, finance, potential games, image processing and fluid dynamics. Several topics are covered that have never been previously in books on this subject, such as the Knothe transport, the properties of functionals on measures, the Dacorogna-Moser flow, the formulation through minimal flows with prescribed divergence formulation, the case of the supremal cost, and the most classical numerical methods. Graduate students and researchers in both pure and applied mathematics interested in the problems and applications of optimal transport will find this to be an invaluable resource.


Mathematics Applied to Deterministic Problems in the Natural Sciences

Mathematics Applied to Deterministic Problems in the Natural Sciences

Author: C. C. Lin

Publisher: SIAM

Published: 1988-12-01

Total Pages: 646

ISBN-13: 9780898712292

DOWNLOAD EBOOK

This book addresses the construction, analysis, and intepretation of mathematical models that shed light on significant problems in the physical sciences, with exercises that reinforce, test and extend the reader's understanding. It may be used as an upper level undergraduate or graduate textbook as well as a reference for researchers.


An Introduction to Mathematical Modeling

An Introduction to Mathematical Modeling

Author: Edward A. Bender

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 273

ISBN-13: 0486137120

DOWNLOAD EBOOK

Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.


Practical Applied Mathematics

Practical Applied Mathematics

Author: Sam Howison

Publisher: Cambridge University Press

Published: 2005-03-24

Total Pages: 362

ISBN-13: 9780521842747

DOWNLOAD EBOOK

Drawing from a wide variety of mathematical subjects, this book aims to show how mathematics is realised in practice in the everyday world. Dozens of applications are used to show that applied mathematics is much more than a series of academic calculations. Mathematical topics covered include distributions, ordinary and partial differential equations, and asymptotic methods as well as basics of modelling. The range of applications is similarly varied, from the modelling of hair to piano tuning, egg incubation and traffic flow. The style is informal but not superficial. In addition, the text is supplemented by a large number of exercises and sideline discussions, assisting the reader's grasp of the material. Used either in the classroom by upper-undergraduate students, or as extra reading for any applied mathematician, this book illustrates how the reader's knowledge can be used to describe the world around them.


Applied Mathematical Modeling and Analysis in Renewable Energy

Applied Mathematical Modeling and Analysis in Renewable Energy

Author: Manoj Sahni

Publisher: CRC Press

Published: 2021-10-04

Total Pages: 213

ISBN-13: 1000455114

DOWNLOAD EBOOK

This reference text introduces latest mathematical modeling techniques and analysis for renewable energy systems. It comprehensively covers important topics including study of combustion characteristics of laser ignited gasoline-air mixture, hierarchical demand response controller, mathematical modeling of an EOQ for a multi-item inventory system, and integration and modeling of small-scale pumped storage with micro optimization model (HOMER). Aimed at graduate students and academic researchers in the fields of electrical engineering, environmental engineering, mechanical engineering, and civil engineering, this text: Discusses applied mathematical modeling techniques in renewable energy. Covers effective storage and generation of power through renewable energy generation sources. Provides real life applications and problems based on renewable energy. Covers new ways of applying mathematical techniques for applications in diverse areas of science and engineering.