Progress in Analysis and Its Applications

Progress in Analysis and Its Applications

Author: Michael Ruzhansky

Publisher: World Scientific

Published: 2010

Total Pages: 668

ISBN-13: 9814313165

DOWNLOAD EBOOK

The International Society for Analysis, its Applications and Computation (ISAAC) has held its international congresses biennially since 1997. This proceedings volume reports on the progress in analysis, applications and computation in recent years as covered and discussed at the 7th ISAAC Congress. This volume includes papers on partial differential equations, function spaces, operator theory, integral transforms and equations, potential theory, complex analysis and generalizations, stochastic analysis, inverse problems, homogenization, continuum mechanics, mathematical biology and medicine. With over 500 participants from almost 60 countries attending the congress, the book comprises a broad selection of contributions in different topics.


An Introduction to Nonlinear Functional Analysis and Elliptic Problems

An Introduction to Nonlinear Functional Analysis and Elliptic Problems

Author: Antonio Ambrosetti

Publisher: Springer Science & Business Media

Published: 2011-07-19

Total Pages: 203

ISBN-13: 0817681140

DOWNLOAD EBOOK

This self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems and displays how various approaches can easily be applied to a range of model cases. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.


A Stability Technique for Evolution Partial Differential Equations

A Stability Technique for Evolution Partial Differential Equations

Author: Victor A. Galaktionov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 388

ISBN-13: 1461220505

DOWNLOAD EBOOK

* Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations. * Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear PDEs. * Well-organized text with detailed index and bibliography, suitable as a course text or reference volume.


Stochastic Inequalities and Applications

Stochastic Inequalities and Applications

Author: Evariste Giné

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 362

ISBN-13: 3034880693

DOWNLOAD EBOOK

Concentration inequalities, which express the fact that certain complicated random variables are almost constant, have proven of utmost importance in many areas of probability and statistics. This volume contains refined versions of these inequalities, and their relationship to many applications particularly in stochastic analysis. The broad range and the high quality of the contributions make this book highly attractive for graduates, postgraduates and researchers in the above areas.


Geometric Analysis and Applications to Quantum Field Theory

Geometric Analysis and Applications to Quantum Field Theory

Author: Peter Bouwknegt

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 213

ISBN-13: 1461200679

DOWNLOAD EBOOK

In the last decade there has been an extraordinary confluence of ideas in mathematics and theoretical physics brought about by pioneering discoveries in geometry and analysis. The various chapters in this volume, treating the interface of geometric analysis and mathematical physics, represent current research interests. No suitable succinct account of the material is available elsewhere. Key topics include: * A self-contained derivation of the partition function of Chern- Simons gauge theory in the semiclassical approximation (D.H. Adams) * Algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory (P. Bouwknegt) * Application of the representation theory of loop groups to simple models in quantum field theory and to certain integrable systems (A.L. Carey and E. Langmann) * A study of variational methods in Hermitian geometry from the viewpoint of the critical points of action functionals together with physical backgrounds (A. Harris) * A review of monopoles in nonabelian gauge theories (M.K. Murray) * Exciting developments in quantum cohomology (Y. Ruan) * The physics origin of Seiberg-Witten equations in 4-manifold theory (S. Wu) Graduate students, mathematicians and mathematical physicists in the above-mentioned areas will benefit from the user-friendly introductory style of each chapter as well as the comprehensive bibliographies provided for each topic. Prerequisite knowledge is minimal since sufficient background material motivates each chapter.


Advances in Mathematical Analysis and its Applications

Advances in Mathematical Analysis and its Applications

Author: Bipan Hazarika

Publisher: CRC Press

Published: 2022-12-12

Total Pages: 358

ISBN-13: 100082439X

DOWNLOAD EBOOK

Advances in Mathematical Analysis and its Applications is designed as a reference text and explores several important aspects of recent developments in the interdisciplinary applications of mathematical analysis (MA), and highlights how MA is now being employed in many areas of scientific research. It discusses theory and problems in real and complex analysis, functional analysis, approximation theory, operator theory, analytic inequalities, the Radon transform, nonlinear analysis, and various applications of interdisciplinary research; some topics are also devoted to specific applications such as the three-body problem, finite element analysis in fluid mechanics, algorithms for difference of monotone operators, a vibrational approach to a financial problem, and more. Features: The book encompasses several contemporary topics in the field of mathematical analysis, their applications, and relevancies in other areas of research and study. It offers an understanding of research problems by presenting the necessary developments in reasonable details The book also discusses applications and uses of operator theory, fixed-point theory, inequalities, bi-univalent functions, functional equations, and scalar-objective programming, and presents various associated problems and ways to solve such problems Contains applications on wavelets analysis and COVID-19 to show that mathematical analysis has interdisciplinary as well as real life applications. The book is aimed primarily at advanced undergraduates and postgraduate students studying mathematical analysis and mathematics in general. Researchers will also find this book useful.


Spatial Patterns

Spatial Patterns

Author: L.A. Peletier

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 347

ISBN-13: 1461201357

DOWNLOAD EBOOK

The study of spatial patterns in extended systems, and their evolution with time, poses challenging questions for physicists and mathematicians alike. Waves on water, pulses in optical fibers, periodic structures in alloys, folds in rock formations, and cloud patterns in the sky: patterns are omnipresent in the world around us. Their variety and complexity make them a rich area of study. In the study of these phenomena an important role is played by well-chosen model equations, which are often simpler than the full equations describing the physical or biological system, but still capture its essential features. Through a thorough analysis of these model equations one hopes to glean a better under standing of the underlying mechanisms that are responsible for the formation and evolution of complex patterns. Classical model equations have typically been second-order partial differential equations. As an example we mention the widely studied Fisher-Kolmogorov or Allen-Cahn equation, originally proposed in 1937 as a model for the interaction of dispersal and fitness in biological populations. As another example we mention the Burgers equation, proposed in 1939 to study the interaction of diffusion and nonlinear convection in an attempt to understand the phenomenon of turbulence. Both of these are nonlinear second-order diffusion equations.


Progress in Activity-Based Analysis

Progress in Activity-Based Analysis

Author: Harry Timmermans

Publisher: Elsevier Science Limited

Published: 2005-07-14

Total Pages: 528

ISBN-13: 9780080445816

DOWNLOAD EBOOK

Reflects an eventful decade of development and application of activity-based models. This work in three extensive sections: reviews a range of approaches to incorporating increased complexity in models; discusses how to obtain the rich data necessary to support complex models; and reports on real applications in action.