Programming Models for Parallel Computing

Programming Models for Parallel Computing

Author: Pavan Balaji

Publisher: MIT Press

Published: 2015-11-06

Total Pages: 488

ISBN-13: 0262528819

DOWNLOAD EBOOK

An overview of the most prominent contemporary parallel processing programming models, written in a unique tutorial style. With the coming of the parallel computing era, computer scientists have turned their attention to designing programming models that are suited for high-performance parallel computing and supercomputing systems. Programming parallel systems is complicated by the fact that multiple processing units are simultaneously computing and moving data. This book offers an overview of some of the most prominent parallel programming models used in high-performance computing and supercomputing systems today. The chapters describe the programming models in a unique tutorial style rather than using the formal approach taken in the research literature. The aim is to cover a wide range of parallel programming models, enabling the reader to understand what each has to offer. The book begins with a description of the Message Passing Interface (MPI), the most common parallel programming model for distributed memory computing. It goes on to cover one-sided communication models, ranging from low-level runtime libraries (GASNet, OpenSHMEM) to high-level programming models (UPC, GA, Chapel); task-oriented programming models (Charm++, ADLB, Scioto, Swift, CnC) that allow users to describe their computation and data units as tasks so that the runtime system can manage computation and data movement as necessary; and parallel programming models intended for on-node parallelism in the context of multicore architecture or attached accelerators (OpenMP, Cilk Plus, TBB, CUDA, OpenCL). The book will be a valuable resource for graduate students, researchers, and any scientist who works with data sets and large computations. Contributors Timothy Armstrong, Michael G. Burke, Ralph Butler, Bradford L. Chamberlain, Sunita Chandrasekaran, Barbara Chapman, Jeff Daily, James Dinan, Deepak Eachempati, Ian T. Foster, William D. Gropp, Paul Hargrove, Wen-mei Hwu, Nikhil Jain, Laxmikant Kale, David Kirk, Kath Knobe, Ariram Krishnamoorthy, Jeffery A. Kuehn, Alexey Kukanov, Charles E. Leiserson, Jonathan Lifflander, Ewing Lusk, Tim Mattson, Bruce Palmer, Steven C. Pieper, Stephen W. Poole, Arch D. Robison, Frank Schlimbach, Rajeev Thakur, Abhinav Vishnu, Justin M. Wozniak, Michael Wilde, Kathy Yelick, Yili Zheng


Programming Massively Parallel Processors

Programming Massively Parallel Processors

Author: David B. Kirk

Publisher: Newnes

Published: 2012-12-31

Total Pages: 519

ISBN-13: 0123914183

DOWNLOAD EBOOK

Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing


Proceedings 1995

Proceedings 1995

Author: Wolfgang Giloi

Publisher: Institute of Electrical & Electronics Engineers(IEEE)

Published: 1995

Total Pages: 244

ISBN-13: 9780818671777

DOWNLOAD EBOOK

The conference was called to address the difficulty of programming distributed memory machines, which is inhibiting the spread of scalable parallel computers; the goal is high-level, application-oriented programming models that assign to the compiler the burdensome, low-level mechanisms of parallel


Proceedings 1995

Proceedings 1995

Author: Wolfgang Giloi

Publisher: Institute of Electrical & Electronics Engineers(IEEE)

Published: 1995

Total Pages: 264

ISBN-13:

DOWNLOAD EBOOK

The conference was called to address the difficulty of programming distributed memory machines, which is inhibiting the spread of scalable parallel computers; the goal is high-level, application-oriented programming models that assign to the compiler the burdensome, low-level mechanisms of parallel


High-Level Parallel Programming Models and Supportive Environments

High-Level Parallel Programming Models and Supportive Environments

Author: Frank Mueller

Publisher: Springer

Published: 2003-05-15

Total Pages: 146

ISBN-13: 3540454012

DOWNLOAD EBOOK

On the 23rd of April, 2001, the 6th Workshop on High-Level Parallel P- gramming Models and Supportive Environments (LCTES’98) was held in San Francisco. HIPShas been held over the past six years in conjunction with IPDPS, the Internation Parallel and Distributed Processing Symposium. The HIPSworkshop focuses on high-level programming of networks of wo- stations, computing clusters and of massively-parallel machines. Its goal is to bring together researchers working in the areas of applications, language design, compilers, system architecture and programming tools to discuss new devel- ments in programming such systems. In recent years, several standards have emerged with an increasing demand of support for parallel and distributed processing. On one end, message-passing frameworks, such as PVM, MPI and VIA, provide support for basic commu- cation. On the other hand, distributed object standards, such as CORBA and DCOM, provide support for handling remote objects in a client-server fashion but also ensure certain guarantees for the quality of services. The key issues for the success of programming parallel and distributed en- ronments are high-level programming concepts and e?ciency. In addition, other quality categories have to be taken into account, such as scalability, security, bandwidth guarantees and fault tolerance, just to name a few. Today’s challenge is to provide high-level programming concepts without s- ri?cing e?ciency. This is only possible by carefully designing for those concepts and by providing supportive programming environments that facilitate program development and tuning.