Recombinant protein expression in microbial systems

Recombinant protein expression in microbial systems

Author: Eduardo A. Ceccarelli

Publisher: Frontiers E-books

Published: 2014-10-02

Total Pages: 103

ISBN-13: 2889192946

DOWNLOAD EBOOK

With the advent of recombinant DNA technology, expressing heterologous proteins in microorganisms rapidly became the method of choice for their production at laboratory and industrial scale. Bacteria, yeasts and other hosts can be grown to high biomass levels efficiently and inexpensively. Obtaining high yields of recombinant proteins from this material was only feasible thanks to constant research on microbial genetics and physiology that led to novel strains, plasmids and cultivation strategies. Despite the spectacular expansion of the field, there is still much room for progress. Improving the levels of expression and the solubility of a recombinant protein can be quite challenging. Accumulation of the product in the cell can lead to stress responses which affect cell growth. Buildup of insoluble and biologically inactive aggregates (inclusion bodies) lowers the yield of production. This is particularly true for obtaining membrane proteins or high-molecular weight and multi-domain proteins. Also, obtaining eukaryotic proteins in a prokaryotic background (for example, plant or animal proteins in bacteria) results in a product that lack post-translational modifications, often required for functionality. Changing to a eukaryotic host (yeasts or filamentous fungi) may not be a proper solution since the pattern of sugar modifications is different than in higher eukaryotes. Still, many advances in the last couple of decades have provided to researchers a wide variety of strategies to maximize the production of their recombinant protein of choice. Everything starts with the careful selection of the host. Be it bacteria or yeast, a broad list of strains is available for overcoming codon use bias, incorrect disulfide bond formation, protein toxicity and lack of post-translational modifications. Also, a huge catalog of plasmids allows choosing for different fusion partners for improving solubility, protein secretion, chaperone co-expression, antibiotic resistance and promoter strength. Next, controlling culture conditions like temperature, inducer and media composition can bolster recombinant protein production. With this Research Topic, we aim to provide an encyclopedic account of the existing approaches to the expression of recombinant proteins in microorganisms, highlight recent discoveries and analyze the future prospects of this exciting and ever-growing field.


Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology

Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology

Author: Otto-Wilhelm Merten

Publisher: Springer Science & Business Media

Published: 2001-11-30

Total Pages: 434

ISBN-13: 9780792371373

DOWNLOAD EBOOK

The general field of fundamental and applied biotechnology becomes increasingly important for the production of biologicals for human and veterinary use, by using prokaryotic and eukaryotic microorganisms. The papers in the present book are refereed articles compiled from oral and poster presentations from the EFB Meeting on Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology, which was organized in Semmering/A from 5th to 8th October 2000. A special feature of this meeting was the comparison of different classes of host cells, mainly bacteria, yeasts, filamentous fungi, and animal cells, which made obvious that many physiological features of recombinant protein formation, like cell nutrition, stress responses, protein folding and secretion, or genetic stability, follow similar patterns in different expression systems. This comparative aspect is by far the point of most interest because such comparisons are rarely done, and if they are done, their results are most often kept secret by the companies who generated them. Audience: Presently, a comparable book does not exist because the compiling of manuscripts from all fields of biotechnology (prokaryotic as well as eukaryotic, up to animal cell biotechnology) is not done in general. This particularity makes this book very interesting for postgraduate students and professionals in the large field of biotechnology who want to get a more global view on the current state of the expression of recombinant biologicals in different host cell systems, the physiological problems associated with the use of different expression systems, potential approaches to solve such difficulties by metabolic engineering or the use of other host cells, and the cooperation between process development and strain improvement, which is crucial for the optimisation of both the production strain and the process. This book should be in every library of an institution/organization involved in biotechnology.


Production Technology of Recombinant Therapeutic Proteins

Production Technology of Recombinant Therapeutic Proteins

Author: Chiranjib Chakraborty

Publisher: Daya Books

Published: 2004

Total Pages: 290

ISBN-13: 9788176221047

DOWNLOAD EBOOK

An Increasing Number Of Recombinant Therapeutic Proteins Are Currently Being Developed, Tested In Clinical Trials And Marketed For Used. Most Of The Recombinant Therapeutic Proteins Are Being Successfully Produced Into Escherichia Coli And Pichia Pastoris Expression System. These Two Expression Systems Are Very Much Efficient And Cost Effective. This Book Takes A Close Look Of These Two Expression Systems And Fermentation Conditions, Purification Strategies Of Different Recombinant Proteins. This Book Also Discusses The Market Size And Cost Analysis For The Production Of Different Therapeutic Proteins And Some General Experimental Protocols For Production. Contents Part I: Recombinant Protein Expression Into Escherichia Coli And Fermentation Conditions; Chapter 1: Introduction; Chapter 2: Construction Of Efficient Expression Vector (Plasmid); Chapter 3: Factors Affecting Transcription, Promoters, Upstream Elements, Transcriptional Terminators, Transcriptional Antitermin, Tightly Regulated Expression Systems; Chapter 4: Mrna Stability; Chapter 5: Factors Affecting Translation, Mrna Translational Initiator, Translational Enhancers, Translational Termination; Chapter 6: Expression Of Target Protein And The Compartments Of Expression, Cytoplasmic Expression, Periplasmic Expression, Extracellular Secretion; Chapter 7: Fusion Proteins; Chapter 8: Post-Translational Protein Folding; Chapter 8: Codon Usage; Chapter 10: Protein Degradation; Chapter 11: Fermentation Conditions For High-Density Cell Cultivation (Hdcc), Growth Medium, Efficient Production Of Recombinant Protein In Hdcc, Nutrient Feeding Strategy In Hdcc; Chapter 12: One Examples Of Protein Production Using E. Coli Expression System; Chapter 13: Conclusion. Part Ii: Recombinant Protein Expression Into Yeast, Pichia Pastoris And Fermentation Conditions; Chapter 1: Introduction; Chapter 2: Why P. Pastoris? Chapter 3: Construction Of Expression Strains, Expression Vectors, Alternative Promoters, Host Strains, Methanol Utilisation Phenotype, Protease-Reduced Host Strains, Integration Of Expression Vectors Into The P. Pastoris Genome, Generating Multicopy Strains; Chapter 4: Post-Translational Modifications Of Secreted Proteins, Secretion Signal Selection, N-Linked Glycosylation; Chapter 5: Production Of Recombinant Proteins In Fermenter Cultures Of The Yeast, Pichia Pastoris, Conceptual Basis For The P. Pastoris Expression System, High-Level Expression In Fermenter Cultures, Protein-Specific Adjustments To Improve Yield, Glycosylation Of Recombinant Proteins, Secretion Signals; Chapter 6: One Examples Of Protein Producing Using P. Pastoris Expression System, Chapter 7: Conclusion. Part Iii: Purification Strategies For Recombinant Proteins; Chapter 1: Purification Of Proteins; Chapter 2: Conventional Chromatography, Ion Exchange Chromatography, Reversed Phase Chromatography, Gel Permeation Chromatography, Affinity Chromatography, Affinity Tags, Cleavage, Conclusion. Part Iv: Market Size And Cost Analysis For The Production Of Therapeutic Proteins; Chapter 1: Market Size Of Therapeutic Proteins; Chapter 2: Outline Structure Of A Productin Unit And Cost Analysis For The Production Of Three Therapeutic Proteins. Part V: General Experimental Protocols; Chapter 1: Different Experimental Protocols, Preparation Of Genome Dna For E. Coli, A Differnt Method For Preparation Of Genomic Dna From Bacteria, Preparation Of Proteins From Periplasm (Osmotic Shock Method), Preparation Of Proteins From Outer Membrane, Transformation Of Plasmid Dna Into E. Coli (Calcium Chloride/Heat Shock Method), Transformation Of Plasmid Dna Into E. Coli (Electroporation), Sds-Page For Large Proteins, Sds-Page For Small Peptide, Pcr Amplification Of Dna, Protein Quantification: Brandford Method, Trans-Bloting For Protein, Restriction Enzyme Digestion Of Dna, Phenol/Chloroform Extraction Of Dna, Ethanol Precipitation Of Dna, Agarose Gel Electrophoresis, Transformation Of E. Coli By Electroporation (Alternative Method), Wizard Tm Pcr Preps Dna Purification System For Rapid, Purification Of Dna Fragments, Alternate Method For Purifying Dna From Agarose Gels, Southern Blotting, Rt Pcr Protocol, Using Superscript Reverse Transcriptase, Preparation Of Sequencing Gels, Isolation Of Rna From Mammalian Cells Using Rnazoltm (Teltest), Preparation For Yeast Transformation, Yeast Transformation, Digesting Prsq-Ura3 With Bamhi, Genomic Dna Preparation Of Yeast, Ligation (Circularisation) Of Genomic Dna Fragments, E. Coli Transformation (Alternate Method), Dna Miniprep From E. Coli (Alternate Method), Basic Plasmid Dna Isolation Protocol, Identification And Determination Of Amount Rec-Hum Proteins Via An Immunoenzymatic Test (Elisa), Determination Of Host Dna Contaminant Into R Hu Protein Through Dot Blot Method, Protocols For Down-Stream Processing.


E. coli Gene Expression Protocols

E. coli Gene Expression Protocols

Author: Peter E. Vaillancourt

Publisher: Springer Science & Business Media

Published: 2008-02-02

Total Pages: 347

ISBN-13: 1592593011

DOWNLOAD EBOOK

Peter E. Vaillancourt presents a collection of popular and emerging methodologies that take advantage of E. coli's ability to quickly and inexpensively express recombinant proteins. The authors focus on two areas of interest: the use of E. coli vectors and strains for production of pure, functional protein, and the use of E. coli as host for the functional screening of large collections of proteins and peptides. Among the cutting-edge techniques demonstrated are those for rapid high-level expression and purification of soluble and functional recombinant protein and those essential to functional genomics, proteomics, and protein engineering.


Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology

Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology

Author: Otto-Wilhelm Merten

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 396

ISBN-13: 9401597499

DOWNLOAD EBOOK

More then 20 years have passed now since the first recombinant protein producing microorganisms have been developed. In the meanwhile, numerous proteins have been produced in bacteria, yeasts and filamentous fungi, as weIl as higher eukaryotic cells, and even entire plants and animals. Many recombinant proteins are on the market today, and some of them reached substantial market volumes. On the first sight one would expect the technology - including the physiology of the host strains - to be optimised in detail after a 20 year's period of development. However, several constraints have limited the incentive for optimisation, especially in the pharmaceutical industry like the urge to proceed quickly or the requirement to define the production parameters for registration early in the development phase. The additional expenses for registration of a new production strain often prohibits a change to an optimised strain. A continuous optimisation of the entire production process is not feasible for the same reasons.


Continuous Culture and Extracellular Recombinant Protein Expression in Escherichia Coli

Continuous Culture and Extracellular Recombinant Protein Expression in Escherichia Coli

Author: Ram Shankar Velur Selvamani

Publisher:

Published: 2015

Total Pages: 0

ISBN-13: 9783832539511

DOWNLOAD EBOOK

The expression of recombinant proteins from Escherichia coli along with the possibility of their subsequent secretion into the extracellular space is a highly desirable feature due to reasons like easier downstream purification and protection of the product from degradation by the host. This feature has been studied and characterized previously in this group the expression of Bacteriocin Release Protein (BRP) controlled by a growth-phase regulated promoter (P raisebox{-0.3ex{ scriptsize fic) that aids in the release of recombinant proteins from the periplasmic space through the outer membrane. It was of major interest to know whether BRP-mediated secretion of recombinant proteins could be adopted in a stable chemostat and if so, what kind of interplay would be seen between activity of growth-phase regulated promoters and the productivity of a chemostat process. To make this continuous process even more sustainable, alternative plasmid selection mechanisms were tested with the aim of avoiding antibiotic-based plasmid selection. Through the use of auxotrophy complementation, it was possible to maintain a previously unstable plasmid, for extended periods of continuous cultivation without any antibiotic-based selection pressure and show extracellular expression of a recombinant enzyme, thus providing an interesting new model.


The Enhancement of Recombinant Protein Production in Escherichia Coli by Directed Genome Evolution and Transcription Reaction Engineering

The Enhancement of Recombinant Protein Production in Escherichia Coli by Directed Genome Evolution and Transcription Reaction Engineering

Author: Jesus M. Gonzalez

Publisher:

Published: 2007

Total Pages: 181

ISBN-13: 9780549107545

DOWNLOAD EBOOK

This new mutant strain, that expressed the green fluorescent protein under the control of the arabinose promoter, was grown in both shake flasks and batch fermentors using the best linear induction profile obtained by simulations. We found that the experimental results closely matched the mathematical ones and resulted in an increase of 44% recombinant protein production in shake flasks and 65% protein production increase in batch fermentors when compared to the full induction case at the start of the fermentation.


Heterologous Gene Expression in E.coli

Heterologous Gene Expression in E.coli

Author: Nicola A. Burgess-Brown

Publisher: Humana Press

Published: 2018-07-20

Total Pages: 429

ISBN-13: 9781493983285

DOWNLOAD EBOOK

This detailed volume provides a toolbox for designing constructs, tackling expression and solubility issues, handling membrane proteins and protein complexes, and exploring innovative engineering of E. coli. The topics are largely grouped under four parts: high-throughput cloning, expression screening, and optimization of expression conditions, protein production and solubility enhancement, case studies to produce challenging proteins and specific protein families, as well as applications of E. coli expression. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Heterologous Gene Expression in E. coli: Methods and Protocols serves molecular biologists, biochemists and structural biologists, those in the beginning of their research careers to those in their prime, to give both an historical and modern overview of the methods available to express their genes of interest in this exceptional organism.