Integrated Circuit Fabrication

Integrated Circuit Fabrication

Author: James D. Plummer

Publisher: Cambridge University Press

Published: 2023-10-31

Total Pages: 679

ISBN-13: 1009303589

DOWNLOAD EBOOK

Master fundamental technologies for modern semiconductor integrated circuits with this definitive textbook. It includes an early introduction of a state-of-the-art CMOS process flow, exposes students to big-picture thinking from the outset, and encourages a practical integration mindset. Extensive use of process and TCAD simulation, using industry tools such as Silvaco Athena and Victory Process, provides students with deeper insight into physical principles, and prepares them for applying these tools in a real-world setting. Accessible framing assumes only a basic background in chemistry, physics and mathematics, providing a gentle introduction for students from a wide range of backgrounds; and over 450 figures (many in color), and more than 280 end-of-chapter problems, will support and cement student understanding. Accompanied by lecture slides and solutions for instructors, this is the ideal introduction to semiconductor technology for senior undergraduate and graduate students in electrical engineering, materials science and physics, and for semiconductor engineering professionals seeking an authoritative introductory reference.


Springer Handbook of Semiconductor Devices

Springer Handbook of Semiconductor Devices

Author: Massimo Rudan

Publisher: Springer Nature

Published: 2022-11-10

Total Pages: 1680

ISBN-13: 3030798275

DOWNLOAD EBOOK

This Springer Handbook comprehensively covers the topic of semiconductor devices, embracing all aspects from theoretical background to fabrication, modeling, and applications. Nearly 100 leading scientists from industry and academia were selected to write the handbook's chapters, which were conceived for professionals and practitioners, material scientists, physicists and electrical engineers working at universities, industrial R&D, and manufacturers. Starting from the description of the relevant technological aspects and fabrication steps, the handbook proceeds with a section fully devoted to the main conventional semiconductor devices like, e.g., bipolar transistors and MOS capacitors and transistors, used in the production of the standard integrated circuits, and the corresponding physical models. In the subsequent chapters, the scaling issues of the semiconductor-device technology are addressed, followed by the description of novel concept-based semiconductor devices. The last section illustrates the numerical simulation methods ranging from the fabrication processes to the device performances. Each chapter is self-contained, and refers to related topics treated in other chapters when necessary, so that the reader interested in a specific subject can easily identify a personal reading path through the vast contents of the handbook.


Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications

Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications

Author: Yosi Shacham-Diamand

Publisher: Springer Science & Business Media

Published: 2009-09-19

Total Pages: 545

ISBN-13: 0387958681

DOWNLOAD EBOOK

In Advanced ULSI interconnects – fundamentals and applications we bring a comprehensive description of copper-based interconnect technology for ultra-lar- scale integration (ULSI) technology for integrated circuit (IC) application. In- grated circuit technology is the base for all modern electronics systems. You can ?nd electronics systems today everywhere: from toys and home appliances to a- planes and space shuttles. Electronics systems form the hardware that together with software are the bases of the modern information society. The rapid growth and vast exploitation of modern electronics system create a strong demand for new and improved electronic circuits as demonstrated by the amazing progress in the ?eld of ULSI technology. This progress is well described by the famous “Moore’s law” which states, in its most general form, that all the metrics that describe integrated circuit performance (e. g. , speed, number of devices, chip area) improve expon- tially as a function of time. For example, the number of components per chip d- bles every 18 months and the critical dimension on a chip has shrunk by 50% every 2 years on average in the last 30 years. This rapid growth in integrated circuits te- nology results in highly complex integrated circuits with an increasing number of interconnects on chips and between the chip and its package. The complexity of the interconnect network on chips involves an increasing number of metal lines per interconnect level, more interconnect levels, and at the same time a reduction in the interconnect line critical dimensions.


Design of 3D Integrated Circuits and Systems

Design of 3D Integrated Circuits and Systems

Author: Rohit Sharma

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 328

ISBN-13: 1351831593

DOWNLOAD EBOOK

Three-dimensional (3D) integration of microsystems and subsystems has become essential to the future of semiconductor technology development. 3D integration requires a greater understanding of several interconnected systems stacked over each other. While this vertical growth profoundly increases the system functionality, it also exponentially increases the design complexity. Design of 3D Integrated Circuits and Systems tackles all aspects of 3D integration, including 3D circuit and system design, new processes and simulation techniques, alternative communication schemes for 3D circuits and systems, application of novel materials for 3D systems, and the thermal challenges to restrict power dissipation and improve performance of 3D systems. Containing contributions from experts in industry as well as academia, this authoritative text: Illustrates different 3D integration approaches, such as die-to-die, die-to-wafer, and wafer-to-wafer Discusses the use of interposer technology and the role of Through-Silicon Vias (TSVs) Presents the latest improvements in three major fields of thermal management for multiprocessor systems-on-chip (MPSoCs) Explores ThruChip Interface (TCI), NAND flash memory stacking, and emerging applications Describes large-scale integration testing and state-of-the-art low-power testing solutions Complete with experimental results of chip-level 3D integration schemes tested at IBM and case studies on advanced complementary metal–oxide–semiconductor (CMOS) integration for 3D integrated circuits (ICs), Design of 3D Integrated Circuits and Systems is a practical reference that not only covers a wealth of design issues encountered in 3D integration but also demonstrates their impact on the efficiency of 3D systems.