In the debate over pollution control, the price of pollution is a key issue. But which is more costly: clean up or prevention? From regulations to technology selection to equipment design, Air Pollution Control Technology Handbook serves as a single source of information on commonly used air pollution control technology. It covers environmental regulations and their history, process design, the cost of air pollution control equipment, and methods of designing equipment for control of gaseous pollutants and particulate matter. This book covers how to: Review alternative design methods Select methods for control Evaluate the costs of control equipment Examine equipment proposals from vendors With its comprehensive coverage of air pollution control processes, the Air Pollution Control Technology Handbook is a detailed reference for the practicing engineer who prepares the basic process engineering and cost estimation required for the design of an air pollution control system. It discusses the topics in depth so that you can apply the methods and equations presented and proceed with equipment design.
A panel of respected air pollution control educators and practicing professionals critically survey the both principles and practices underlying control processes, and illustrate these with a host of detailed design examples for practicing engineers. The authors discuss the performance, potential, and limitations of the major control processes-including fabric filtration, cyclones, electrostatic precipitation, wet and dry scrubbing, and condensation-as a basis for intelligent planning of abatement systems,. Additional chapters critically examine flare processes, thermal oxidation, catalytic oxidation, gas-phase activated carbon adsorption, and gas-phase biofiltration. The contributors detail the Best Available Technologies (BAT) for air pollution control and provide cost data, examples, theoretical explanations, and engineering methods for the design, installation, and operation of air pollution process equipment. Methods of practical design calculation are illustrated by numerous numerical calculations.
Air pollution control can be approached from a number of different engineering disciplines environmental, chemical, civil, and mechanical. To that end, Noel de Nevers has written an engaging overview of the subject. While based on the fundamentals of chemical engineering, the treatment is accessible to readers with only one year of college chemistry. In addition to discussions of individual air pollutants and the theory and practice of air pollution control devices, de Nevers devotes about half the book to topics that influence device selection and design, such as atmospheric models and U.S. air pollution law. The generous number of end-of-chapter problems are designed to develop more complex thinking about the concepts presented and integrate them with readers personal experienceincreasing the likelihood of deeper understanding.
Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.
Environmental engineers work to increase the level of health and happiness in the world by designing, building, and operating processes and systems for water treatment, water pollution control, air pollution control, and solid waste management. These projects compete for resources with projects in medicine, transportation, education, and other fields that have a similar objective. The challenge is to make the investments efficient – to get the best project outputs with a minimum of inputs. Cost Engineering for Pollution Prevention and Control examines how to identify the best solution by judging alternatives with respect to some measure of system performance, such as total capital cost, annual cost, annual net profit, return on investment, cost-benefit ratio, net present worth, minimum production time, maximum production rate, minimum energy utilization, and so on. Key Features: Explains how to estimate preliminary costs, how to compare the life cycle costs of alternative projects, how to find the optimal balance between capital costs and operating costs. Emphasis is placed on formulating the problem rather than on the mathematical details of how the calculations are done. Provides numerous practical examples and case studies. Includes end-of-chapter exercises dealing with water, wastewater, air pollution, solid wastes, and remediation projects. The important concepts presented in this book can be understood by those students who have taken an introductory course in environmental engineering. Advanced knowledge of process design is not required. The material can also be utilized by engineers, managers, and others who would benefit from a better understanding of how engineers look at problems.
This work is intended as a textbook on the theory and practice of sustainable air pollution management. The book discusses the fundamental aspects of traditional air pollution topics as well as some more advanced topics (such as atmospheric brown cloud, trans-boundary movement of air pollutants, air transportation of radioactive material, biological air pollutants, etc.). Though much has been written about theory of Air Pollution Management, it is still not practiced in society for a variety of reasons. Having worked at the grass roots level and travelled extensively, the authors have captured useful, cost-effective and successfully implemented practices with their cameras and notebooks. The non-technical issues that are often seen as a hindrance to adopting sustainable solutions due to political, legal and social factors are also addressed to enable readers to understand a different dimension of social problems. Topics covered include selecting a separation process, process description, materials selection logic, implementation etc. Theory, design and operation specifications are also included for each air pollution management option. The book is an excellent guide for those readers looking to understand and practice sustainable air pollution management. Readers also learn how energy-efficient and cost-effective methods can be successfully used to reduce the production of contaminants, providing cleaner air.
A guide to understanding common technologies used in industrial air pollution control. It provides plant process engineers, air pollution control engineers and technicians with an overview of pollution controls systems and equipment. Tips for recognizing and solving common equipment problems are an integral element of the book. SI units are included.
Leading pollution control educators and practicing professionals describe how various combinations of different cutting-edge process systems can be arranged to solve air, noise, and thermal pollution problems. Each chapter discusses in detail a variety of process combinations, along with technical and economic evaluations, and presents explanations of the principles behind the designs, as well as numerous variant designs useful to practicing engineers. The emphasis throughout is on developing the necessary engineering solutions from fundamental principles of chemistry, physics, and mathematics. The authors also include extensive references, cost data, design methods, guidance on the installation and operation of various air pollution control process equipment and systems, and Best Available Technologies (BAT) for air thermal and noise pollution control.
The Handbook of Air Pollution Prevention and Control provides a concise overview of the latest technologies for managing industrial air pollution in petrochemical, oil and gas, and allied industries. Detailed material on equipment selection, sizing, and troubleshooting operations is provided along with practical design methodology. Unique to this volume are discussions and information on energy-efficient technologies and approaches to implementing environmental cost accounting measures.Included in the text are sidebar discussions, questions for thinking and discussing, recommended resources for the reader (including Web sites), and a comprehensive glossary.The Handbook of Air Pollution Prevention and Control also includes free access to US EPA's air dispersion model SCREEN3. Detailed examples on the application of this important software to analyzing air dispersion from industrial processes and point sources are provided in the Handbook, along with approaches to applying this important tool in developing approaches to pollution prevention and in selecting control technologies. By applying SCREEN3, along with the examples given in the Handbook, the user can: evaluate the impact of processes and operations to air quality, and apply the model to assess emergency scenarios to help in planning, to develop environmental impact assessments, to select pollution control technologies, and to develop strategies for pollution prevention. Two companion books by Cheremisinoff are available:Handbook of Water and Wastewater Treatment Technologies, and Handbook of Solid Waste Management and Waste Minimization Technologies. - Uniquely combines prevention and control concepts while covering the practices and technologies that are applied to the prevention of air pollution in the chemicals manufacturing, oil and gas, iron and steel, and pharmaceutical industries, and to the cleaning and control of industrial air emissions. - Provides a bridge for today's environmental manager by focusing on an integrated approach to managing air pollution problems within industrial operations. - Shows you how to calculate financial returns from pollution prevention projects.