Simulation of Semiconductor Devices and Processes

Simulation of Semiconductor Devices and Processes

Author: Siegfried Selberherr

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 525

ISBN-13: 3709166578

DOWNLOAD EBOOK

The "Fifth International Conference on Simulation of Semiconductor Devices and Processes" (SISDEP 93) continues a series of conferences which was initiated in 1984 by K. Board and D. R. J. Owen at the University College of Wales, Swansea, where it took place a second time in 1986. Its organization was succeeded by G. Baccarani and M. Rudan at the University of Bologna in 1988, and W. Fichtner and D. Aemmer at the Federal Institute of Technology in Zurich in 1991. This year the conference is held at the Technical University of Vienna, Austria, September 7 - 9, 1993. This conference shall provide an international forum for the presentation of out standing research and development results in the area of numerical process and de vice simulation. The miniaturization of today's semiconductor devices, the usage of new materials and advanced process steps in the development of new semiconduc tor technologies suggests the design of new computer programs. This trend towards more complex structures and increasingly sophisticated processes demands advanced simulators, such as fully three-dimensional tools for almost arbitrarily complicated geometries. With the increasing need for better models and improved understand ing of physical effects, the Conference on Simulation of Semiconductor Devices and Processes brings together the simulation community and the process- and device en gineers who need reliable numerical simulation tools for characterization, prediction, and development.


Simulation of Semiconductor Processes and Devices 2007

Simulation of Semiconductor Processes and Devices 2007

Author: Tibor Grasser

Publisher: Springer Science & Business Media

Published: 2007-11-18

Total Pages: 472

ISBN-13: 3211728619

DOWNLOAD EBOOK

This volume contains the proceedings of the 12th International Conference on Simulation of Semiconductor Processes and Devices, SISPAD 2007, held September 2007 in Vienna, Austria. It provides a global forum for the presentation and discussion of recent advances and developments in the theoretical description, physical modeling and numerical simulation and analysis of semiconductor fabrication processes, device operation and system performance.


Analysis and Simulation of Semiconductor Devices

Analysis and Simulation of Semiconductor Devices

Author: S. Selberherr

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 308

ISBN-13: 3709187524

DOWNLOAD EBOOK

The invention of semiconductor devices is a fairly recent one, considering classical time scales in human life. The bipolar transistor was announced in 1947, and the MOS transistor, in a practically usable manner, was demonstrated in 1960. From these beginnings the semiconductor device field has grown rapidly. The first integrated circuits, which contained just a few devices, became commercially available in the early 1960s. Immediately thereafter an evolution has taken place so that today, less than 25 years later, the manufacture of integrated circuits with over 400.000 devices per single chip is possible. Coincident with the growth in semiconductor device development, the literature concerning semiconductor device and technology issues has literally exploded. In the last decade about 50.000 papers have been published on these subjects. The advent of so called Very-Large-Scale-Integration (VLSI) has certainly revealed the need for a better understanding of basic device behavior. The miniaturization of the single transistor, which is the major prerequisite for VLSI, nearly led to a breakdown of the classical models of semiconductor devices.


3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics

3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics

Author: Simon Li

Publisher: Springer Science & Business Media

Published: 2011-10-01

Total Pages: 303

ISBN-13: 1461404819

DOWNLOAD EBOOK

Technology computer-aided design, or TCAD, is critical to today’s semiconductor technology and anybody working in this industry needs to know something about TCAD. This book is about how to use computer software to manufacture and test virtually semiconductor devices in 3D. It brings to life the topic of semiconductor device physics, with a hands-on, tutorial approach that de-emphasizes abstract physics and equations and emphasizes real practice and extensive illustrations. Coverage includes a comprehensive library of devices, representing the state of the art technology, such as SuperJunction LDMOS, GaN LED devices, etc.


Device Modeling for Analog and RF CMOS Circuit Design

Device Modeling for Analog and RF CMOS Circuit Design

Author: Trond Ytterdal

Publisher: John Wiley & Sons

Published: 2003-08-01

Total Pages: 306

ISBN-13: 0470864346

DOWNLOAD EBOOK

Bridges the gap between device modelling and analog circuit design. Includes dedicated software enabling actual circuit design. Covers the three significant models: BSIM3, Model 9 &, and EKV. Presents practical guidance on device development and circuit implementation. The authors offer a combination of extensive academic and industrial experience.


Optoelectronic Integrated Circuit Design and Device Modeling

Optoelectronic Integrated Circuit Design and Device Modeling

Author: Jianjun Gao

Publisher: John Wiley & Sons

Published: 2011-09-19

Total Pages: 258

ISBN-13: 0470828382

DOWNLOAD EBOOK

In Optoelectronic Integrated Circuit Design and Device Modeling, Professor Jianjun Gao introduces the fundamentals and modeling techniques of optoelectronic devices used in high-speed optical transmission systems. Gao covers electronic circuit elements such as FET, HBT, MOSFET, as well as design techniques for advanced optical transmitter and receiver front-end circuits. The book includes an overview of optical communication systems and computer-aided optoelectronic IC design before going over the basic concept of laser diodes. This is followed by modeling and parameter extraction techniques of lasers and photodiodes. Gao covers high-speed electronic semiconductor devices, optical transmitter design, and optical receiver design in the final three chapters. Addresses a gap within the rapidly growing area of transmitter and receiver modeling in OEICs Explains diode physics before device modeling, helping readers understand their equivalent circuit models Provides comprehensive explanations for E/O and O/E conversions done with laser and photodiodes Covers an extensive range of devices for high-speed applications Accessible for students new to microwaves Presentation slides available for instructor use This book is primarily aimed at practicing engineers, researchers, and post-graduates in the areas of RF, microwaves, IC design, photonics and lasers, and solid state devices. The book is also a strong supplement for senior undergraduates taking courses in RF and microwaves. Lecture materials for instructors available at www.wiley.com/go/gao


Technology CAD — Computer Simulation of IC Processes and Devices

Technology CAD — Computer Simulation of IC Processes and Devices

Author: Robert W. Dutton

Publisher: Springer Science & Business Media

Published: 1993-07-31

Total Pages: 400

ISBN-13: 9780792393795

DOWNLOAD EBOOK

129 3.6 Exercises 130 3.7 References. 131 4 PN Junctions 131 4.1 Introduction. 132 4.2 Carrier Densities: Equilibrium Case 4.3 Non-Equilibrium .......... . 139 4.4 Carrier Transport and Conservation 144 4.5 The pn Junction - Equilibrium Conditions. 147 155 4.6 The pn Junction - Non-equilibrium. 4.7 SEDAN Analysis . . . . . . . . . . . . . 166 4.7.1 Heavy Doping Effects ..... . 176 4.7.2 Analysis of High-Level Injection 181 190 4.7.3 Technology-Dependent Device Effects 4.8 Summary 193 4.9 Exercises 193 194 4.10 References. 5 MOS Structures 197 5.1 Introduction ............. . 197 5.2 The MOS Capacitor ........ . 198 5.3 Basic MOSFET I-V Characteristics. 208 5.4 Threshold Voltage in Nonuniform Substrate 217 5.5 MOS Device Design by Simulation . . . . . 224 5.5.1 Body-bias Sensitivity of Threshold Voltage 225 5.5.2 Two-region Model . . . . . . . . 231 5.5.3 MOSFET Design by Simulation. 234 5.6 Summary 240 5.7 Exercises 240 5.8 References. 242 6 Bipolar Transistors 243 6.1 Introduction ... 243 6.2 Lateral pnp Transistor Operation 245 6.3 Transport Current Analysis ... 252 6.4 Generalized Charge Storage Model 260 6.,1) Transistor Equivalent Circuits. 267 6.5.1 Charge Control Model ...


Process Engineering Analysis in Semiconductor Device Fabrication

Process Engineering Analysis in Semiconductor Device Fabrication

Author: Stanley Middleman

Publisher: McGraw-Hill Companies

Published: 1993

Total Pages: 802

ISBN-13:

DOWNLOAD EBOOK

Written primarily for chemical engineering students, the material included in this new text is an extension of upper level chemical engineering courses. Covering a range of processes in semiconductor device fabrication, the authors try to present traditional chemical engineering methodology in a non-traditional context. The text covers such topics as crystal growth and filtration and contains over 300 worked examples and problems.


Advanced Device Modeling and Simulation

Advanced Device Modeling and Simulation

Author: Tibor Grasser

Publisher: World Scientific

Published: 2003

Total Pages: 220

ISBN-13: 9789812386076

DOWNLOAD EBOOK

Microelectronics is one of the most rapidly changing scientific fields today. The tendency to shrink devices as far as possible results in extremely small devices which can no longer be described using simple analytical models. This book covers various aspects of advanced device modeling and simulation. As such it presents extensive reviews and original research by outstanding scientists. The bulk of the book is concerned with the theory of classical and quantum-mechanical transport modeling, based on macroscopic, spherical harmonics and Monte Carlo methods.


Handbook of Optoelectronic Device Modeling and Simulation

Handbook of Optoelectronic Device Modeling and Simulation

Author: Joachim Piprek

Publisher: CRC Press

Published: 2017-10-10

Total Pages: 835

ISBN-13: 149874947X

DOWNLOAD EBOOK

• Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. • Gives a broad overview of concepts with concise explanations illustrated by real results. • Compares different levels of modeling, from simple analytical models to complex numerical models. • Discusses practical methods of model validation. • Includes an overview of numerical techniques.