The automatic generation of parallel code from high level sequential description is of key importance to the wide spread use of high performance machine architectures. This text considers (in detail) the theory and practical realization of automatic mapping of algorithms generated from systems of uniform recurrence equations (do-lccps) onto fixed size architectures with defined communication primitives. Experimental results of the mapping scheme and its implementation are given.
These proceedings focus on nanostructured and non-crystalline materials, including amorphous and multiphase systems, fine particles and granular systems, thin films, polymers and other disordered systems. The topics covered are: fabrication and processing techniques; relaxation, diffusive processes and molecular motions; structure and crystallization phenomena; electric and magnetic properties; and technological applications.
This workshop is the fifth in a series devoted to the presentation and discussion of new findings in the field of noncrystalline solids such as amorphous and nanocrystalline materials, granular systems and fine particles, multiphase systems and thin films, polymers, and other disordered systems. The workshop is divided into six categories, with ten invited contributions.
This volume in contemporary physics records the blossoming physical activities that have occurred at the turn of the millennium, including the most up-to-date and exciting scientific and technological discoveries of recent years. The book can serve as a guide or quick reference for professionals in related fields.
This proceedings cover the basic aspects and technical applications of non-crystalline solids from experts in different fields like polymer science, metallic glasses, basic properties, technological applications etc.
When it was learned that Professor Scholze was revising his classic work on the nature, structure, and properties of glass, it was natural to conceive the idea of translating the new edition into English. Professor Scholze enthusiastically endorsed this suggestion and asked for the concurrence of his publisher, Springer-Verlag. Springer-Verlag welcomed the idea and readily agreed to provide support. With the essential agreements in place, Professor Michael Lakin, Professor of German at Alfred University, was asked to do the transla tion, and I subsequently agreed to work with Professor Lakin to check for technical accuracy. I was happy to accept this task because of my respect for Professor Scholze and because of the value to glass scientists and engineers of having available an English edition of Glas. Professor Scholze died before publication ofthis English edition of his work. However, he had reviewed the entire English text and had approved it. Professor Lakin and I appreciated the confidence he placed in us, and we were gratified with his acceptance of our efforts. His scientific contributions were numerous and important; they will long serve as guideposts for research in many key areas. We hope this translation of Glas will help make his legacy accessible to more people. Professor Lakin and I have tried to provide a translation that is accurate and true to the original but that has a distinctive English "flavor"; that is, it is not just a literal translation.
This volume in contemporary physics records the blossoming physical activities that have occurred at the turn of the millennium, including the most up-to-date and exciting scientific and technological discoveries of recent years. The book can serve as a guide or quick reference for professionals in related fields.