Both an introductory course to broadband dielectric spectroscopy and a monograph describing recent dielectric contributions to current topics, this book is the first to cover the topic and has been hotly awaited by the scientific community.
"Biochar is the carbon-rich product when biomass (such as wood, manure, or crop residues) is heated in a closed container with little or no available air. It can be used to improve agriculture and the environment in several ways, and its stability in soil and superior nutrient-retention properties make it an ideal soil amendment to increase crop yields. In addition to this, biochar sequestration, in combination with sustainable biomass production, can be carbon-negative and therefore used to actively remove carbon dioxide from the atmosphere, with major implications for mitigation of climate change. Biochar production can also be combined with bioenergy production through the use of the gases that are given off in the pyrolysis process.This book is the first to synthesize the expanding research literature on this topic. The book's interdisciplinary approach, which covers engineering, environmental sciences, agricultural sciences, economics and policy, is a vital tool at this stage of biochar technology development. This comprehensive overview of current knowledge will be of interest to advanced students, researchers and professionals in a wide range of disciplines"--Provided by publisher.
The development of high temperature superconductors is one of the major technological discoveries of this century. The impact and interactions from the scientific, technical, business and political aspects will be presented.
Fundamental concepts coupled with practical, step-by-step guidance With its emphasis on core principles, this text equips readers with the skills and knowledge to design the many processes needed to safely and successfully manufacture thermoplastic parts. The first half of the text sets forth the general theory and concepts underlying polymer processing, such as the viscoelastic response of polymeric fluids and diffusion and mass transfer. Next, the text explores specific practical aspects of polymer processing, including mixing, extrusion dies, and post-die processing. By addressing a broad range of design issues and methods, the authors demonstrate how to solve most common processing problems. This Second Edition of the highly acclaimed Polymer Processing has been thoroughly updated to reflect current polymer processing issues and practices. New areas of coverage include: Micro-injection molding to produce objects weighing a fraction of a gram, such as miniature gears and biomedical devices New chapter dedicated to the recycling of thermoplastics and the processing of renewable polymers Life-cycle assessment, a systematic method for determining whether recycling is appropriate and which form of recycling is optimal Rheology of polymers containing fibers Chapters feature problem sets, enabling readers to assess and reinforce their knowledge as they progress through the text. There are also special design problems throughout the text that reflect real-world polymer processing issues. A companion website features numerical subroutines as well as guidance for using MATLAB®, IMSL®, and Excel to solve the sample problems from the text. By providing both underlying theory and practical step-by-step guidance, Polymer Processing is recommended for students in chemical, mechanical, materials, and polymer engineering.
A comprehensive reference for the poultry industry—Volume 2 describes poultry processing from raw meat to final retail products With an unparalleled level of coverage, the Handbook of Poultry Science and Technology provides an up-to-date and comprehensive reference on poultry processing. Volume 2: Secondary Processing covers processing poultry from raw meat to uncooked, cooked or semi-cooked retail products. It includes the scientific, technical, and engineering principles of poultry processing, methods and product categories, product manufacturing and attributes, and sanitation and safety. Volume 2: Secondary Processing is divided into seven parts: Secondary processing of poultry products—an overview Methods in processing poultry products—includes emulsions and gelations; breading and battering; mechanical deboning; marination, cooking, and curing; and non-meat ingredients Product manufacturing—includes canned poultry meat, turkey bacon and sausage, breaded product (nuggets), paste product (pâté), poultry ham, luncheon meat, processed functional egg products, and special dietary products for the elderly, the ill, children, and infants Product quality and sensory attributes—includes texture and tenderness, protein and poultry meat quality, flavors, color, handling refrigerated poultry, and more Engineering principles, operations, and equipment—includes processing equipment, thermal processing, packaging, and more Contaminants, pathogens, analysis, and quality assurance—includes microbial ecology and spoilage in poultry and poultry products; campylobacter; microbiology of ready-to-eat poultry products; and chemical and microbial analysis Safety systems in the United States—includes U.S. sanitation requirements, HACCP, U.S. enforcement tools and mechanisms
Many areas of knowledge converge in the building industry and therefore research in this field necessarily involves an interdisciplinary approach. Effective research requires strong relation between a broad variety of scientific and technological domains and more conventional construction or craft processes, while also considering advanced management processes, where all the main actors permanently interact. This publication takes an interdisciplinary approach grouping various studies on the building industry chosen from among the works presented for the 2nd International Conference on Construction and Building Research. The papers examine aspects of materials and building systems; construction technology; energy and sustainability; construction management; heritage, refurbishment and conservation. The information contained within these pages may be of interest to researchers and practitioners in construction and building activities from the academic sphere, as well as public and private sectors.
Since the establishment of the conductive properties of intrinsic conductive polymers, a huge variety of basic and applied research has been carried out, involving different polymers, copolymers, blends, mixtures and composites. Thus, fundamental understanding of physical and chemical properties of these materials has been sought, while the applied aspects have advanced very rapidly, crossing the boundaries between disciplines. Today, the applications of conducting polymers in various fields such as neuroscience, nanotechnology and green chemistry, are easily found. This development is dynamic and it needs to be updated and hence the motivation for the set of results presented in this book; which provides information about the development of fundamentals, and about some applications of conductive polymers.
The paradigm of deterministic chaos has influenced thinking in many fields of science. Chaotic systems show rich and surprising mathematical structures. In the applied sciences, deterministic chaos provides a striking explanation for irregular behaviour and anomalies in systems which do not seem to be inherently stochastic. The most direct link between chaos theory and the real world is the analysis of time series from real systems in terms of nonlinear dynamics. Experimental technique and data analysis have seen such dramatic progress that, by now, most fundamental properties of nonlinear dynamical systems have been observed in the laboratory. Great efforts are being made to exploit ideas from chaos theory wherever the data displays more structure than can be captured by traditional methods. Problems of this kind are typical in biology and physiology but also in geophysics, economics, and many other sciences.
In the slightly more than thirty years since its formulation, the Hubbard model has become a central component of modern many-body physics. It provides a paradigm for strongly correlated, interacting electronic systems and offers insights not only into the general underlying mathematical structure of many-body systems but also into the experimental behavior of many novel electronic materials. In condensed matter physics, the Hubbard model represents the simplest theoret ical framework for describing interacting electrons in a crystal lattice. Containing only two explicit parameters - the ratio ("Ujt") between the Coulomb repulsion and the kinetic energy of the electrons, and the filling (p) of the available electronic band - and one implicit parameter - the structure of the underlying lattice - it appears nonetheless capable of capturing behavior ranging from metallic to insulating and from magnetism to superconductivity. Introduced originally as a model of magnetism of transition met als, the Hubbard model has seen a spectacular recent renaissance in connection with possible applications to high-Tc superconductivity, for which particular emphasis has been placed on the phase diagram of the two-dimensional variant of the model. In mathematical physics, the Hubbard model has also had an essential role. The solution by Lieb and Wu of the one-dimensional Hubbard model by Bethe Ansatz provided the stimulus for a broad and continuing effort to study "solvable" many-body models. In higher dimensions, there have been important but isolated exact results (e. g. , N agoaka's Theorem).