This two-volume set of CCIS 391 and CCIS 392 constitutes the refereed proceedings of the Fourth International Conference on Information Computing and Applications, ICICA 2013, held in Singapore, in August 2013. The 126 revised full papers presented in both volumes were carefully reviewed and selected from 665 submissions. The papers are organized in topical sections on Internet computing and applications; engineering management and applications; Intelligent computing and applications; business intelligence and applications; knowledge management and applications; information management system; computational statistics and applications.
This book addresses the challenges of social network and social media analysis in terms of prediction and inference. The chapters collected here tackle these issues by proposing new analysis methods and by examining mining methods for the vast amount of social content produced. Social Networks (SNs) have become an integral part of our lives; they are used for leisure, business, government, medical, educational purposes and have attracted billions of users. The challenges that stem from this wide adoption of SNs are vast. These include generating realistic social network topologies, awareness of user activities, topic and trend generation, estimation of user attributes from their social content, and behavior detection. This text has applications to widely used platforms such as Twitter and Facebook and appeals to students, researchers, and professionals in the field.
The latest trends in information technology represent a new intellectual paradigm for scientific exploration and the visualization of scientific phenomena. This title covers the emerging technologies in the field. Academics, engineers, industrialists, scientists and researchers engaged in teaching, and research and development of computer science and information technology will find the book useful for their academic and research work.
Acts as single source reference providing readers with an overview of how computer vision can contribute to the different applications in the field of road transportation This book presents a survey of computer vision techniques related to three key broad problems in the roadway transportation domain: safety, efficiency, and law enforcement. The individual chapters present significant applications within those problem domains, each presented in a tutorial manner, describing the motivation for and benefits of the application, and a description of the state of the art. Key features: Surveys the applications of computer vision techniques to road transportation system for the purposes of improving safety and efficiency and to assist law enforcement. Offers a timely discussion as computer vision is reaching a point of being useful in the field of transportation systems. Available as an enhanced eBook with video demonstrations to further explain the concepts discussed in the book, as well as links to publically available software and data sets for testing and algorithm development. The book will benefit the many researchers, engineers and practitioners of computer vision, digital imaging, automotive and civil engineering working in intelligent transportation systems. Given the breadth of topics covered, the text will present the reader with new and yet unconceived possibilities for application within their communities.
This book provides a deep understanding of the relationship between machine learning and causal inference. It covers a broad range of topics, starting with the preliminary foundations of causal inference, which include basic definitions, illustrative examples, and assumptions. It then delves into the different types of classical causal inference methods, such as matching, weighting, tree-based models, and more. Additionally, the book explores how machine learning can be used for causal effect estimation based on representation learning and graph learning. The contribution of causal inference in creating trustworthy machine learning systems to accomplish diversity, non-discrimination and fairness, transparency and explainability, generalization and robustness, and more is also discussed. The book also provides practical applications of causal inference in various domains such as natural language processing, recommender systems, computer vision, time series forecasting, and continual learning. Each chapter of the book is written by leading researchers in their respective fields. Machine Learning for Causal Inference explores the challenges associated with the relationship between machine learning and causal inference, such as biased estimates of causal effects, untrustworthy models, and complicated applications in other artificial intelligence domains. However, it also presents potential solutions to these issues. The book is a valuable resource for researchers, teachers, practitioners, and students interested in these fields. It provides insights into how combining machine learning and causal inference can improve the system's capability to accomplish causal artificial intelligence based on data. The book showcases promising research directions and emphasizes the importance of understanding the causal relationship to construct different machine-learning models from data.
A comprehensive review of the most recent applications of intelligent multi-modal data processing Intelligent Multi-Modal Data Processing contains a review of the most recent applications of data processing. The Editors and contributors noted experts on the topic offer a review of the new and challenging areas of multimedia data processing as well as state-of-the-art algorithms to solve the problems in an intelligent manner. The text provides a clear understanding of the real-life implementation of different statistical theories and explains how to implement various statistical theories. Intelligent Multi-Modal Data Processing is an authoritative guide for developing innovative research ideas for interdisciplinary research practices. Designed as a practical resource, the book contains tables to compare statistical analysis results of a novel technique to that of the state-of-the-art techniques and illustrations in the form of algorithms to establish a pre-processing and/or post-processing technique for model building. The book also contains images that show the efficiency of the algorithm on standard data set. This important book: Includes an in-depth analysis of the state-of-the-art applications of signal and data processing Contains contributions from noted experts in the field Offers information on hybrid differential evolution for optimal multilevel image thresholding Presents a fuzzy decision based multi-objective evolutionary method for video summarisation Written for students of technology and management, computer scientists and professionals in information technology, Intelligent Multi-Modal Data Processing brings together in one volume the range of multi-modal data processing.
The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. This, the 47th issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, constitutes a special issue focusing on Digital Ecosystems and Social Networks. The 9 revised selected papers cover topics that include Social Big Data, Data Analysis, Cloud-Based Feedback, Experience Ecosystems, Pervasive Environments, and Smart Systems.
Energy has been a crucial element for human beings and sustainable development. The issues of global warming and non-green energy have yet to be resolved. This book is a collection of twelve articles that provide strong evidence for the success of artificial intelligence deployment in energy research, particularly research devoted to non-intrusive load monitoring, network, and grid, as well as other emerging topics. The presented artificial intelligence algorithms may provide insight into how to apply similar approaches, subject to fine-tuning and customization, to other unexplored energy research. The ultimate goal is to fully apply artificial intelligence to the energy sector. This book may serve as a guide for professionals, researchers, and data scientists—namely, how to share opinions and exchange ideas so as to facilitate a better fusion of energy, academic, and industry research, and improve in the quality of people's daily life activities.
It has been a long history of Information Technology innovations within the Cultural Heritage areas. The Performing arts has also been enforced with a number of new innovations which unveil a range of synergies and possibilities. Most of the technologies and innovations produced for digital libraries, media entertainment and education can be exploited in the field of performing arts, with adaptation and repurposing. Performing arts offer many interesting challenges and opportunities for research and innovations and exploitation of cutting edge research results from interdisciplinary areas. For these reasons, the ECLAP 2012 can be regarded as a continuation of past conferences such as AXMEDIS and WEDELMUSIC (both pressed by IEEE and FUP). ECLAP is an European Commission project to create a social network and media access service for performing arts institutions in Europe, to create the e-library of performing arts, exploiting innovative solutions coming from the ICT.