Special functions and q-series are currently very active areas of research which overlap with many other areas of mathematics, such as representation theory, classical and quantum groups, affine Lie algebras, number theory, harmonic analysis, and mathematical physics. This book presents the state-of-the-art of the subject and its applications.
Special functions and q-series are currently very active areas of research which overlap with many other areas of mathematics, such as representation theory, classical and quantum groups, affine Lie algebras, number theory, harmonic analysis, and mathematical physics. This book presents the state-of-the-art of the subject and its applications.
(Hardcover). This book is written to provide an easy to follow study on the subject of Special Functions and Orthogonal Polynomials. It is written in such a way that it can be used as a self study text. Basic knowledge of calculus and differential equations is needed. The book is intended to help students in engineering, physics and applied sciences understand various aspects of Special Functions and Orthogonal Polynomials that very often occur in engineering, physics, mathematics and applied sciences. The book is organized in chapters that are in a sense self contained. Chapter 1 deals with series solutions of Differential Equations. Gamma and Beta functions are studied in Chapter 2 together with other functions that are defined by integrals. Legendre Polynomials and Functions are studied in Chapter 3. Chapters 4 and 5 deal with Hermite, Laguerre and other Orthogonal Polynomials. A detailed treatise of Bessel Function in given in Chapter 6.
In the past few decades, many significant insights have been gained into several areas of computational methods in sciences and engineering. New problems and methodologies have appeared in some areas of sciences and engineering. There is always a need in these fields for the advancement of information exchange. The aim of this book is to facilitate the sharing of ideas, problems and methodologies between computational scientists and engineers in several disciplines. Extended abstracts of papers on the recent advances regarding computational methods in sciences and engineering are provided. The book briefly describes new methods in numerical analysis, computational mathematics, computational and theoretical physics, computational and theoretical chemistry, computational biology, computational mechanics, computational engineering, computational medicine, high performance computing, etc.
(308 Pages). This book is written to provide an easy to follow study on the subject of Special Functions and Orthogonal Polynomials. It is written in such a way that it can be used as a self study text. Basic knowledge of calculus and differential equations is needed. The book is intended to help students in engineering, physics and applied sciences understand various aspects of Special Functions and Orthogonal Polynomials that very often occur in engineering, physics, mathematics and applied sciences. The book is organized in chapters that are in a sense self contained. Chapter 1 deals with series solutions of Differential Equations. Gamma and Beta functions are studied in Chapter 2 together with other functions that are defined by integrals. Legendre Polynomials and Functions are studied in Chapter 3. Chapters 4 and 5 deal with Hermite, Laguerre and other Orthogonal Polynomials. A detailed treatise of Bessel Function in given in Chapter 6.
The following topics are discussed in this volume: recent developments in operator theory, coherent states and wavelet analysis, geometric and topological methods in theoretical physics and quantum field theory, and applications of these methods of mathematical physics to problems in atomic and molecular physics as well as the world of the elementary particles and their fundamental interactions. Two extensive sets of lecture notes on quantization techniques in general, and quantum gauge theories and strings as an avenue towards quantum geometry, are also included. The volume should be of interest to anyone working in a field using the mathematical methods associated with any of these topics.
The COPROMAPH Conference series has now evolved into a significant international arena where fundamental concepts in mathematical and theoretical physics and their physics applications can be conceived, developed and disseminated. Basic ideas for addressing a variety of contemporary problems in mathematical and theoretical physics are presented in a nonintimidating atmosphere. Experts provide the reader the fundamentals to predict new possibilities in physics and other fields.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings? (ISTP? / ISI Proceedings)? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)? CC Proceedings ? Engineering & Physical Sciences
Differential Equations are very important tools in Mathematical Analysis. They are widely found in mathematics itself and in its applications to statistics, computing, electrical circuit analysis, dynamical systems, economics, biology, and so on. Recently there has been an increasing interest in and widely-extended use of differential equations and systems of fractional order (that is, of arbitrary order) as better models of phenomena in various physics, engineering, automatization, biology and biomedicine, chemistry, earth science, economics, nature, and so on. Now, new unified presentation and extensive development of special functions associated with fractional calculus are necessary tools, being related to the theory of differentiation and integration of arbitrary order (i.e., fractional calculus) and to the fractional order (or multi-order) differential and integral equations. This book provides learners with the opportunity to develop an understanding of advancements of special functions and the skills needed to apply advanced mathematical techniques to solve complex differential equations and Partial Differential Equations (PDEs). Subject matters should be strongly related to special functions involving mathematical analysis and its numerous applications. The main objective of this book is to highlight the importance of fundamental results and techniques of the theory of complex analysis for differential equations and PDEs and emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Specific topics include but are not limited to Partial differential equations Least squares on first-order system Sequence and series in functional analysis Special functions related to fractional (non-integer) order control systems and equations Various special functions related to generalized fractional calculus Operational method in fractional calculus Functional analysis and operator theory Mathematical physics Applications of numerical analysis and applied mathematics Computational mathematics Mathematical modeling This book provides the recent developments in special functions and differential equations and publishes high-quality, peer-reviewed book chapters in the area of nonlinear analysis, ordinary differential equations, partial differential equations, and related applications.
About ten years ago, the handful of peculiar numerical diogarithmic identities, known since the time of Euler and Landen, gave rise to new discoveries concerning cyclotomic equations and related polylogarithmic ladders. These discoveries were made mostly by the methods of classical analysis, with help from machine computation. About the same time, starting with Bloch's studies on the application of the dilogarithm in algebraic K-theory and algebraic geometry, many important discoveries were made in diverse areas. This book seeks to provide a synthesis of these two streams of thought. In addition to an account of ladders and their association with functional equations, the chapters include applications to volume calculations in Lobatchevsky geometry, relations to partition theory, connections with Clausen's function, new functional equations, and applications to K-theory and other branches of abstract algebra. This rapidly-expanding field is brought up to date with two appendices, and the book concludes with an extensive bibliography of recent publications. About two-thirds of the material is accessible to mathematicians and scientists in many areas, while the remainder requires more specialized background in abstract algebra.