Fixed Point Theory And Applications - Proceedings Of The Second International Conference

Fixed Point Theory And Applications - Proceedings Of The Second International Conference

Author: Kok Keong Tan

Publisher: World Scientific

Published: 1992-08-08

Total Pages: 394

ISBN-13: 9814554308

DOWNLOAD EBOOK

This volume contains current works of researchers from twelve different countries on fixed point theory and applications. Topics include, in part, nonexpansive mappings, multifunctions, minimax inequalities, applications to game theory and computation of fixed points. It is valuable to pure and applied mathematicians as well as computing scientists and mathematical economists.


Fixed Point Theory and Its Applications to Real World Problems

Fixed Point Theory and Its Applications to Real World Problems

Author: Anita Tomar

Publisher:

Published: 2021

Total Pages: 0

ISBN-13: 9781536193367

DOWNLOAD EBOOK

"Fixed-point theory initially emerged in the article demonstrating existence of solutions of differential equations, which appeared in the second quarter of the 18th century (Joseph Liouville, 1837). Later on, this technique was improved as a method of successive approximations (Charles Emile Picard, 1890) which was extracted and abstracted as a fixed-point theorem in the framework of complete normed space (Stefan Banach, 1922). It ensures presence as well as uniqueness of a fixed point, gives an approximate technique to really locate the fixed point and the a priori and a posteriori estimates for the rate of convergence. It is an essential device in the theory of metric spaces. Subsequently, it is stated that fixed-point theory is initiated by Stefan Banach. Fixed-point theorems give adequate conditions under which there exists a fixed point for a given function and enable us to ensure the existence of a solution of the original problem. In an extensive variety of scientific issues, beginning from different branches of mathematics, the existence of a solution is comparable to the existence of a fixed point for a suitable mapping. The book "Fixed Point Theory & its Applications to Real World Problems" is an endeavour to present results in fixed point theory which are extensions, improvements and generalizations of classical and recent results in this area and touches on distinct research directions within the metric fixed-point theory. It provides new openings for further exploration and makes for an easily accessible source of knowledge. This book is apposite for young researchers who want to pursue their research in fixed-point theory and is the latest in the field, giving new techniques for the existence of a superior fixed point, a fixed point, a near fixed point, a fixed circle, a near fixed interval circle, a fixed disc, a near fixed interval disc, a coincidence point, a common fixed point, a coupled common fixed point, amiable fixed sets, strong coupled fixed points and so on, utilizing minimal conditions. It offers novel applications besides traditional applications which are applicable to real world problems. The book is self-contained and unified which will serve as a reference book to researchers who are in search of novel ideas. It will be a valued addition to the library"--


Fixed Point Theory and Its Applications

Fixed Point Theory and Its Applications

Author: Robert F. Brown

Publisher: American Mathematical Soc.

Published: 1988

Total Pages: 280

ISBN-13: 0821850806

DOWNLOAD EBOOK

Represents the proceedings of an informal three-day seminar held during the International Congress of Mathematicians in Berkeley in 1986. This work covers topics including topological fixed point theory from both the algebraic and geometric viewpoints, and the fixed point theory of nonlinear operators on normed linear spaces and its applications.


Fixed Point Theory and Applications

Fixed Point Theory and Applications

Author: Yeol Je Cho

Publisher: Nova Publishers

Published: 2002

Total Pages: 240

ISBN-13: 9781590332160

DOWNLOAD EBOOK

The aim of this volume is to introduce recent new topics in the areas of fixed point theory, variational inequality and complementarity problem theory, non-linear ergodic theory difference, differential and integral equations, control and optimisation theory, dynamic system theory, inequality theory, stochastic analysis and probability theory, and their applications.


Differential Geometry, Algebra, and Analysis

Differential Geometry, Algebra, and Analysis

Author: Mohammad Hasan Shahid

Publisher: Springer Nature

Published: 2020-09-04

Total Pages: 284

ISBN-13: 9811554552

DOWNLOAD EBOOK

This book is a collection of selected research papers, some of which were presented at the International Conference on Differential Geometry, Algebra and Analysis (ICDGAA 2016), held at the Department of Mathematics, Jamia Millia Islamia, New Delhi, from 15–17 November 2016. It covers a wide range of topics—geometry of submanifolds, geometry of statistical submanifolds, ring theory, module theory, optimization theory, and approximation theory—which exhibit new ideas and methodologies for current research in differential geometry, algebra and analysis. Providing new results with rigorous proofs, this book is, therefore, of much interest to readers who wish to learn new techniques in these areas of mathematics.


Classification of Lipschitz Mappings

Classification of Lipschitz Mappings

Author: Lukasz Piasecki

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 232

ISBN-13: 1466595221

DOWNLOAD EBOOK

Classification of Lipschitz Mappings presents a systematic, self-contained treatment of a new classification of Lipschitz mappings and its application in many topics of metric fixed point theory. Suitable for readers interested in metric fixed point theory, differential equations, and dynamical systems, the book only requires a basic background in


Function Spaces

Function Spaces

Author: Henryk Hudzik

Publisher: CRC Press

Published: 2000-07-18

Total Pages: 534

ISBN-13: 1482270501

DOWNLOAD EBOOK

This volume compiles research results from the fifth Function Spaces International Conference, held in Poznan, Poland. It presents key advances, modern applications and analyses of function spaces and contains two special sections recognizing the contributions and influence of Wladyslaw Orlicz and Genadil Lozanowskii.