This volume contains current works of researchers from twelve different countries on fixed point theory and applications. Topics include, in part, nonexpansive mappings, multifunctions, minimax inequalities, applications to game theory and computation of fixed points. It is valuable to pure and applied mathematicians as well as computing scientists and mathematical economists.
"Fixed-point theory initially emerged in the article demonstrating existence of solutions of differential equations, which appeared in the second quarter of the 18th century (Joseph Liouville, 1837). Later on, this technique was improved as a method of successive approximations (Charles Emile Picard, 1890) which was extracted and abstracted as a fixed-point theorem in the framework of complete normed space (Stefan Banach, 1922). It ensures presence as well as uniqueness of a fixed point, gives an approximate technique to really locate the fixed point and the a priori and a posteriori estimates for the rate of convergence. It is an essential device in the theory of metric spaces. Subsequently, it is stated that fixed-point theory is initiated by Stefan Banach. Fixed-point theorems give adequate conditions under which there exists a fixed point for a given function and enable us to ensure the existence of a solution of the original problem. In an extensive variety of scientific issues, beginning from different branches of mathematics, the existence of a solution is comparable to the existence of a fixed point for a suitable mapping. The book "Fixed Point Theory & its Applications to Real World Problems" is an endeavour to present results in fixed point theory which are extensions, improvements and generalizations of classical and recent results in this area and touches on distinct research directions within the metric fixed-point theory. It provides new openings for further exploration and makes for an easily accessible source of knowledge. This book is apposite for young researchers who want to pursue their research in fixed-point theory and is the latest in the field, giving new techniques for the existence of a superior fixed point, a fixed point, a near fixed point, a fixed circle, a near fixed interval circle, a fixed disc, a near fixed interval disc, a coincidence point, a common fixed point, a coupled common fixed point, amiable fixed sets, strong coupled fixed points and so on, utilizing minimal conditions. It offers novel applications besides traditional applications which are applicable to real world problems. The book is self-contained and unified which will serve as a reference book to researchers who are in search of novel ideas. It will be a valued addition to the library"--
Represents the proceedings of an informal three-day seminar held during the International Congress of Mathematicians in Berkeley in 1986. This work covers topics including topological fixed point theory from both the algebraic and geometric viewpoints, and the fixed point theory of nonlinear operators on normed linear spaces and its applications.
The aim of this volume is to introduce recent new topics in the areas of fixed point theory, variational inequality and complementarity problem theory, non-linear ergodic theory difference, differential and integral equations, control and optimisation theory, dynamic system theory, inequality theory, stochastic analysis and probability theory, and their applications.
This book is a collection of selected research papers, some of which were presented at the International Conference on Differential Geometry, Algebra and Analysis (ICDGAA 2016), held at the Department of Mathematics, Jamia Millia Islamia, New Delhi, from 15–17 November 2016. It covers a wide range of topics—geometry of submanifolds, geometry of statistical submanifolds, ring theory, module theory, optimization theory, and approximation theory—which exhibit new ideas and methodologies for current research in differential geometry, algebra and analysis. Providing new results with rigorous proofs, this book is, therefore, of much interest to readers who wish to learn new techniques in these areas of mathematics.
Classification of Lipschitz Mappings presents a systematic, self-contained treatment of a new classification of Lipschitz mappings and its application in many topics of metric fixed point theory. Suitable for readers interested in metric fixed point theory, differential equations, and dynamical systems, the book only requires a basic background in
This volume compiles research results from the fifth Function Spaces International Conference, held in Poznan, Poland. It presents key advances, modern applications and analyses of function spaces and contains two special sections recognizing the contributions and influence of Wladyslaw Orlicz and Genadil Lozanowskii.