Proceedings of the First International Conference on Genetic Algorithms and their Applications

Proceedings of the First International Conference on Genetic Algorithms and their Applications

Author: John J. Grefenstette

Publisher: Psychology Press

Published: 2014-01-02

Total Pages: 345

ISBN-13: 1317760247

DOWNLOAD EBOOK

Computer solutions to many difficult problems in science and engineering require the use of automatic search methods that consider a large number of possible solutions to the given problems. This book describes recent advances in the theory and practice of one such search method, called Genetic Algorithms. Genetic algorithms are evolutionary search techniques based on principles derived from natural population genetics, and are currently being applied to a variety of difficult problems in science, engineering, and artificial intelligence.


Proceedings of the First International Conference on Genetic Algorithms and their Applications

Proceedings of the First International Conference on Genetic Algorithms and their Applications

Author: John J. Grefenstette

Publisher: Psychology Press

Published: 2014-01-02

Total Pages: 234

ISBN-13: 1317760255

DOWNLOAD EBOOK

Computer solutions to many difficult problems in science and engineering require the use of automatic search methods that consider a large number of possible solutions to the given problems. This book describes recent advances in the theory and practice of one such search method, called Genetic Algorithms. Genetic algorithms are evolutionary search techniques based on principles derived from natural population genetics, and are currently being applied to a variety of difficult problems in science, engineering, and artificial intelligence.


Proceedings of the Tenth International Conference on Management Science and Engineering Management

Proceedings of the Tenth International Conference on Management Science and Engineering Management

Author: Jiuping Xu

Publisher: Springer

Published: 2016-08-23

Total Pages: 1697

ISBN-13: 9811018375

DOWNLOAD EBOOK

This book presents the proceedings of the Tenth International Conference on Management Science and Engineering Management (ICMSEM2016) held from August 30 to September 02, 2016 at Baku, Azerbaijan and organized by the International Society of Management Science and Engineering Management, Sichuan University (Chengdu, China) and Ministry of Education of Azerbaijan. The aim of conference was to foster international research collaborations in management science and engineering management as well as to provide a forum to present current research findings. The presented papers were selected and reviewed by the Program Committee, made up of respected experts in the area of management science and engineering management from around the globe. The contributions focus on identifying management science problems in engineering, innovatively using management theory and methods to solve engineering problems effectively and establishing novel management theories and methods to address new engineering management issues.


Genetic Algorithms and their Applications

Genetic Algorithms and their Applications

Author: John J. Grefenstette

Publisher: Psychology Press

Published: 2013-08-21

Total Pages: 269

ISBN-13: 1134989733

DOWNLOAD EBOOK

First Published in 1987. This is the collected proceedings of the second International Conference on Genetic Algorithms held at the Massachusetts Institute of Technology, Cambridge, MA on the 28th to the 31st July 1987. With papers on Genetic search theory, Adaptive search operators, representation issues, connectionism and parallelism, credit assignment ad learning, and applications.


OmeGA

OmeGA

Author: Dimitri Knjazew

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 165

ISBN-13: 146150807X

DOWNLOAD EBOOK

OmeGA: A Competent Genetic Algorithm for Solving Permutation and Scheduling Problems addresses two increasingly important areas in GA implementation and practice. OmeGA, or the ordering messy genetic algorithm, combines some of the latest in competent GA technology to solve scheduling and other permutation problems. Competent GAs are those designed for principled solutions of hard problems, quickly, reliably, and accurately. Permutation and scheduling problems are difficult combinatorial optimization problems with commercial import across a variety of industries. This book approaches both subjects systematically and clearly. The first part of the book presents the clearest description of messy GAs written to date along with an innovative adaptation of the method to ordering problems. The second part of the book investigates the algorithm on boundedly difficult test functions, showing principled scale up as problems become harder and longer. Finally, the book applies the algorithm to a test function drawn from the literature of scheduling.


Foundations of Genetic Algorithms 1993 (FOGA 2)

Foundations of Genetic Algorithms 1993 (FOGA 2)

Author: FOGA

Publisher: Morgan Kaufmann

Published: 2014-06-28

Total Pages: 343

ISBN-13: 0080948324

DOWNLOAD EBOOK

Foundations of Genetic Algorithms, Volume 2 provides insight of theoretical work in genetic algorithms. This book provides a general understanding of a canonical genetic algorithm. Organized into six parts encompassing 19 chapters, this volume begins with an overview of genetic algorithms in the broader adaptive systems context. This text then reviews some results in mathematical genetics that use probability distributions to characterize the effects of recombination on multiple loci in the absence of selection. Other chapters examine the static building block hypothesis (SBBH), which is the underlying assumption used to define deception. This book discusses as well the effect of noise on the quality of convergence of genetic algorithms. The final chapter deals with the primary goal in machine learning and artificial intelligence, which is to dynamically and automatically decompose problems into simpler problems to facilitate their solution. This book is a valuable resource for theorists and genetic algorithm researchers.


Predictive Modeling in Biomedical Data Mining and Analysis

Predictive Modeling in Biomedical Data Mining and Analysis

Author: Sudipta Roy

Publisher: Academic Press

Published: 2022-08-28

Total Pages: 346

ISBN-13: 0323914454

DOWNLOAD EBOOK

Predictive Modeling in Biomedical Data Mining and Analysis presents major technical advancements and research findings in the field of machine learning in biomedical image and data analysis. The book examines recent technologies and studies in preclinical and clinical practice in computational intelligence. The authors present leading-edge research in the science of processing, analyzing and utilizing all aspects of advanced computational machine learning in biomedical image and data analysis. As the application of machine learning is spreading to a variety of biomedical problems, including automatic image segmentation, image classification, disease classification, fundamental biological processes, and treatments, this is an ideal reference. Machine Learning techniques are used as predictive models for many types of applications, including biomedical applications. These techniques have shown impressive results across a variety of domains in biomedical engineering research. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood, hence the need for new resources and information. - Includes predictive modeling algorithms for both Supervised Learning and Unsupervised Learning for medical diagnosis, data summarization and pattern identification - Offers complete coverage of predictive modeling in biomedical applications, including data visualization, information retrieval, data mining, image pre-processing and segmentation, mathematical models and deep neural networks - Provides readers with leading-edge coverage of biomedical data processing, including high dimension data, data reduction, clinical decision-making, deep machine learning in large data sets, multimodal, multi-task, and transfer learning, as well as machine learning with Internet of Biomedical Things applications


An Introduction to Genetic Algorithms

An Introduction to Genetic Algorithms

Author: Melanie Mitchell

Publisher: MIT Press

Published: 1998-03-02

Total Pages: 226

ISBN-13: 9780262631853

DOWNLOAD EBOOK

Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.


Evolutionary Computing in Advanced Manufacturing

Evolutionary Computing in Advanced Manufacturing

Author: Manoj Tiwari

Publisher: John Wiley & Sons

Published: 2011-07-12

Total Pages: 356

ISBN-13: 1118161874

DOWNLOAD EBOOK

This cutting-edge book covers emerging, evolutionary and nature inspired optimization techniques in the field of advanced manufacturing. The complexity of real life advanced manufacturing problems often cannot be solved by traditional engineering or computational methods. Hence, in recent years researchers and practitioners have proposed and developed new strands of advanced, intelligent techniques and methodologies. Evolutionary computing approaches are introduced in the context of a wide range of manufacturing activities, and through the examination of practical problems and their solutions, readers will gain confidence to apply these powerful computing solutions. The initial chapters introduce and discuss the well established evolutionary algorithm, to help readers to understand the basic building blocks and steps required to successfully implement their own solutions to real life advanced manufacturing problems. In the later chapters, modified and improved versions of evolutionary algorithms are discussed. The book concludes with appendices which provide general descriptions of several evolutionary algorithms.