This symposium provided a forum for interchange of state-of-the-art techniques and databases and for standardization of radiation metrology.The proceedings are of value to anyone involved in reactor dosimetry, including researchers, manufacturers, and representatives from industry, utilities and regulatory agencies. The major topics treated are: reactor pressure vessel surveillance and plant life management; reactor dosimetry techniques; benchmarks; nuclear data; damage correlation and exposure parameters; experimental and calculational characterization of irradiation environments; dosimetry for research reactors and irradiation experiments.
This book presents the state of the art in reactor dosimetry as applied to nuclear power plants and to high performance research reactors, accelerator-driven systems and spallation sources. The reader will also find the latest advances in computer code development for radiation transport and shielding. In addition, the book focuses on radiation measurement techniques.
Comprising the proceedings of the Tenth International Symposium on Reactor Dosimetry held in Osaka, Japan in September 1999, this volume contains some 100 papers, plus three keynote speeches, arranged in seven sections that cover the technical scope of the symposium. The first two sections consist o
This book gives the state of the art in the field of reactor dosimetry as applied in nuclear power plants and research reactors. Surveillance programs are presented for nuclear power plants in Europe, including Russia and Ukraine, USA, Argentina and Korea. New cross-section measurements from most of the European, American and Japanese research reactors are reported. The latest developments in computer code development for radiation transport and shielding calculations, and radiation measurement techniques are also highlighted.
Reactor Pressure Vessels (RPVs) contain the fuel and therefore the reaction at the heart of nuclear power plants. They are a life-determining structural component: if they suffer serious damage, the continued operation of the plant is in jeopardy. This book critically reviews irradiation embrittlement, the main degradation mechanism affecting RPV steels, and mitigation routes for managing the RPV lifetime. Part I reviews RPV design and fabrication in different countries, with an emphasis on the materials required, their important properties, and manufacturing technologies. Part II then considers RVP embrittlement in operational nuclear power plants using different reactors. Chapters are devoted to embrittlement in light-water reactors, including WWER-type reactors and Magnox reactors. Finally, Part III presents techniques for studying embrittlement, including irradiation simulation techniques, microstructural characterisation techniques, and probabilistic fracture mechanics. Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants provides a thorough review of an issue that is central to the safety of nuclear power generation. The book includes contributions from an international team of experts, and will be a useful resource for nuclear plant operators and managers, relevant regulatory and safety bodies, nuclear metallurgists and other academics in this field - Discusses reactor pressure vessel (RPV) design and the effect irradiation embrittlement can have, the main degradation mechanism affecting RPVs - Examines embrittlement processes in RPVs in different reactor types, as well as techniques for studying RPV embrittlement