Presents the research and applications on sensing technologies to monitor and control the structure and health of buildings, bridges, installations, and other constructed facilities.
Structural control represents a high technology proposal for civil engineering innovation. This book collects the invited papers presented at the 3rd International Workshop on Structural Control. The geographical coverage and the high quality of the invited speaker's contributions make the book a unique update in the areas of intelligent structures, structural control and smart materials for civil and infrastructure engineers.
Structural control represents a high technology proposal for civil engineering innovation. This book collects the invited papers presented at the 3rd International Workshop on Structural Control. The geographical coverage and the high quality of the invited speaker's contributions make the book a unique update in the areas of intelligent structures, structural control and smart materials for civil and infrastructure engineers. Contents: An Identification Algorithm for Feedback Active Control (N D Anh); Application of Control Techniques to Masonry and Monumental Constructions (A Baratta et al.); Monitoring of Infrastructures in the Marine Environment (A Del Grosso); Health Monitoring and Optimum Maintenance Programs for Structures in Seismic Zones (L Esteva & E Heredia-Zavoni); Outline of Safety Evaluation of Structural Response-Control Buildings and Smart Structural Systems as Future Trends (K Yoshikazu & T Hiroyuki); Recent Developments in Smart Structures Research in India (S Narayanan & V Balamurugan); Perspective of Application of Active Damping of Cable Structures (A Preumont & F Bossens); Parametric and Nonparametric Adaptive Identification of Nonlinear Structural Systems (A W Smyth et al.); Active Control Requirements in Railway Projects (H Wenzel); and other papers. Readership: Civil engineers and scientists working in the areas of intelligent systems and smart materials.
A smart civil structure integrates smart materials, sensors, actuators, signal processors, communication networks, power sources, diagonal strategies, control strategies, repair strategies, and life-cycle management strategies. It should function optimally and safely in its environment and maintain structural integrity during strong winds, severe earthquakes, and other extreme events. This book extends from the fundamentals to the state-of-the-art. It covers the elements of smart civil structures, their integration, and their functions. The elements consist of smart materials, sensors, control devices, signal processors, and communication networks. Integration refers to multi-scale modelling and model updating, multi-type sensor placement, control theory, and collective placement of control devices and sensors. And the functions include structural health monitoring, structural vibration control, structural self-repairing, and structural energy harvesting, with emphasis on their synthesis to form truly smart civil structures. It suits civil engineering students, professionals, and researchers with its blend of principles and practice.
Proceedings of Sino-US Joint Symposium/Workshop on Recent Developments and Future Trends of Computational Mechanics in Structural Engineering, Beijing, China, September 24-28 1991
Need to develop, document, and synthesize?This comprehensive handbook is designed to provide you with the knowledge needed to successfully implement an active, hybrid or semi-active control system to a structure for safeguarding it against environmental forces such as wind or earthquakes.
This book addresses applications of earthquake engineering for both offshore and land-based structures. It is self-contained as a reference work and covers a wide range of topics, including topics related to engineering seismology, geotechnical earthquake engineering, structural engineering, as well as special contents dedicated to design philosophy, determination of ground motions, shock waves, tsunamis, earthquake damage, seismic response of offshore and arctic structures, spatial varied ground motions, simplified and advanced seismic analysis methods, sudden subsidence of offshore platforms, tank liquid impacts during earthquakes, seismic resistance of non-structural elements, and various types of mitigation measures, etc. The target readership includes professionals in offshore and civil engineering, officials and regulators, as well as researchers and students in this field.
This volume is a collection of chapters covering recent advances in stochastic optimal control theory and algebraic systems theory. The book will be a useful reference for researchers and graduate students in systems and control, algebraic systems theory, and applied mathematics. Requiring only knowledge of undergraduate-level control and systems theory, the work may be used as a supplementary textbook in a graduate course on optimal control or algebraic systems theory.
This book presents concepts, methods and techniques to examine symptoms of faults and failures of structures, systems and components and to monitor functional performance and structural integrity. The book is organized in five parts. Part A introduces the scope and application of technical diagnostics and gives a comprehensive overview of the physics of failure. Part B presents all relevant methods and techniques for diagnostics and monitoring: from stress, strain, vibration analysis, nondestructive evaluation, thermography and industrial radiology to computed tomography and subsurface microstructural analysis. Part C cores the principles and concepts of technical failure analysis, illustrates case studies, and outlines machinery diagnostics with an emphasis on tribological systems. Part D describes the application of structural health monitoring and performance control to plants and the technical infrastructure, including buildings, bridges, pipelines, electric power stations, offshore wind structures, and railway systems. And finally, Part E is an excursion on diagnostics in arts and culture. The book integrates knowledge of basic sciences and engineering disciplines with contributions from research institutions, academe, and industry, written by internationally known experts from various parts of the world, including Europe, Canada, India, Japan, and USA.