PROCEDURES FOR LOW-POWER PHYSICS EXPERIMENTS IN THE SRE.

PROCEDURES FOR LOW-POWER PHYSICS EXPERIMENTS IN THE SRE.

Author:

Publisher:

Published: 1960

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

A complilation of the procedures for the low-power physics experiments to be performed with the SRE second fuel loading is presented. Reactor power will remain below 120 kw. Critical mass, shim rod worths, statistical weights, isothermal temperature coefficient, and reactor transfer function will be measured. (W.D.M.).


Physics of Nuclear Reactors

Physics of Nuclear Reactors

Author: P. Mohanakrishnan

Publisher: Academic Press

Published: 2021-05-19

Total Pages: 786

ISBN-13: 0128224428

DOWNLOAD EBOOK

Physics of Nuclear Reactors presents a comprehensive analysis of nuclear reactor physics. Editors P. Mohanakrishnan, Om Pal Singh, and Kannan Umasankari and a team of expert contributors combine their knowledge to guide the reader through a toolkit of methods for solving transport equations, understanding the physics of reactor design principles, and developing reactor safety strategies. The inclusion of experimental and operational reactor physics makes this a unique reference for those working and researching nuclear power and the fuel cycle in existing power generation sites and experimental facilities. The book also includes radiation physics, shielding techniques and an analysis of shield design, neutron monitoring and core operations. Those involved in the development and operation of nuclear reactors and the fuel cycle will gain a thorough understanding of all elements of nuclear reactor physics, thus enabling them to apply the analysis and solution methods provided to their own work and research. This book looks to future reactors in development and analyzes their status and challenges before providing possible worked-through solutions. Cover image: Kaiga Atomic Power Station Units 1 – 4, Karnataka, India. In 2018, Unit 1 of the Kaiga Station surpassed the world record of continuous operation, at 962 days. Image courtesy of DAE, India. Includes methods for solving neutron transport problems, nuclear cross-section data and solutions of transport theory Dedicates a chapter to reactor safety that covers mitigation, probabilistic safety assessment and uncertainty analysis Covers experimental and operational physics with details on noise analysis and failed fuel detection


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports

Author:

Publisher:

Published: 1994

Total Pages: 1028

ISBN-13:

DOWNLOAD EBOOK

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.


The Experimental Foundations of Particle Physics

The Experimental Foundations of Particle Physics

Author: Robert N. Cahn

Publisher: Cambridge University Press

Published: 2009-07-23

Total Pages: 567

ISBN-13: 0521521475

DOWNLOAD EBOOK

A unique presentation of our current understanding of particle physics for researchers, advanced undergraduate and graduate students.


Quantum Precision Measurement and Cold Atom Physics

Quantum Precision Measurement and Cold Atom Physics

Author: Jingbiao Chen

Publisher: Frontiers Media SA

Published: 2022-09-23

Total Pages: 161

ISBN-13: 2832502296

DOWNLOAD EBOOK

Ever since the invention of the cesium atomic clock in 1955, quantum frequency standards have seen considerable development over the decades, as a representative of quantum precision measurement. The progress in frequency measurements achieved in the past allowed one to perform quantum precision measurements of other physical and technical quantities with unprecedented precision, whenever they could be traced back to a frequency measurement. Using atomic transitions as frequency reference, quantum frequency standards are far less susceptible to external perturbations, and the identity of microscopic particles allows easy replication of a quantum standard with the same frequency. With laser cooling and trapping, cold atomic ensembles eliminate Doppler shift broadening, and have become the go-to quantum reference when precision and new physics are pursued. The advancement of laser cooling and cold atom physics, in addition to novel physical matter states such as Bose-Einstein Condensation, give rise to new experimental techniques in quantum precision measurement, especially quantum frequency standards, such as cesium fountain clocks dictating the SI second, as well as optical lattice clocks and single-ion optical clocks pushing the frontier of quantum metrology. Other areas of quantum metrology, such as gravitometers and magnetometers, also benefit greatly from cold atoms. For practical applications, quantum frequency standards are usually required to be compact and portable, and thermal atoms in the form of atomic beams or vapor cells are utilized. Commercially available quantum frequency standards such as cesium beam clocks or rubidium clocks have become the cornerstone of navigation and timekeeping. Compact optical clocks based on various laser spectroscopic techniques have also been developed. As researchers strive to break through the limits of accurate quantum measurement and atomic temperature, new fields such as precise measurement, quantum computing and quantum simulation based on cold atoms are further opened up, and challenges still exist to explore new physical phenomena in the field of cold atoms. In honor of Prof. Yiqiu Wang on the occasion of his 90th birthday, the main goal of this Research Topic is to provide a platform to exhibit the recent achievements and reveal the future challenges in quantum precision measurement, as well as studies of cold atom physics with quantum metrology, closely related to the long-term scientific research areas of Prof. Yiqiu Wang. Both Original Research and Review articles are encouraged. Topics of interest to this collection include, but are not limited to: • Quantum precision measurements • Microwave atomic clocks and their applications • Optical frequency standards, laser spectroscopy, and their applications • Quantum measurement based on cold atom • Quantum computation and quantum simulation based on cold atom


Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging

Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging

Author: Ephraim Suhir

Publisher: Springer Science & Business Media

Published: 2007-05-26

Total Pages: 1471

ISBN-13: 0387329897

DOWNLOAD EBOOK

This handbook provides the most comprehensive, up-to-date and easy-to-apply information on the physics, mechanics, reliability and packaging of micro- and opto-electronic materials. It details their assemblies, structures and systems, and each chapter contains a summary of the state-of-the-art in a particular field. The book provides practical recommendations on how to apply current knowledge and technology to design and manufacture. It further describes how to operate a viable, reliable and cost-effective electronic component or photonic device, and how to make such a device into a successful commercial product.