Mathematical Foundations of Classical Statistical Mechanics

Mathematical Foundations of Classical Statistical Mechanics

Author: Dmitriĭ I︠A︡kovlevich Petrina

Publisher: CRC Press

Published: 1989

Total Pages: 362

ISBN-13: 9782881246814

DOWNLOAD EBOOK

Introducing the functional method practiced in the USSR, this well- translated monograph considers the problem of investigating systems of infinite numbers of particles. It discusses the equilibrium and non- equilibrium states of infinite classical statistical systems, and investigates the thermodynamic limit for non-equilibrium systems and of the states of infinite systems, for which thermodynamic equivalence is proved. Book club price, $95. Annotation copyrighted by Book News, Inc., Portland, OR


Statistical Physics

Statistical Physics

Author: Y Klimontovich

Publisher: CRC Press

Published: 2024-11-15

Total Pages: 762

ISBN-13: 1040293093

DOWNLOAD EBOOK

A look at Statistical Physics by renowned Russia-Soviet physicist Yuri Klimontovich of the Moscow State University, MSU Faculty of Physics.


Statistical Physics of Fields

Statistical Physics of Fields

Author: Mehran Kardar

Publisher: Cambridge University Press

Published: 2007-06-07

Total Pages: 376

ISBN-13: 1139855883

DOWNLOAD EBOOK

While many scientists are familiar with fractals, fewer are familiar with scale-invariance and universality which underlie the ubiquity of their shapes. These properties may emerge from the collective behaviour of simple fundamental constituents, and are studied using statistical field theories. Initial chapters connect the particulate perspective developed in the companion volume, to the coarse grained statistical fields studied here. Based on lectures taught by Professor Kardar at MIT, this textbook demonstrates how such theories are formulated and studied. Perturbation theory, exact solutions, renormalization groups, and other tools are employed to demonstrate the emergence of scale invariance and universality, and the non-equilibrium dynamics of interfaces and directed paths in random media are discussed. Ideal for advanced graduate courses in statistical physics, it contains an integrated set of problems, with solutions to selected problems at the end of the book and a complete set available to lecturers at www.cambridge.org/9780521873413.


Handbook of Dynamical Systems

Handbook of Dynamical Systems

Author: B. Fiedler

Publisher: Gulf Professional Publishing

Published: 2002-02-21

Total Pages: 1099

ISBN-13: 0080532845

DOWNLOAD EBOOK

This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.


Statistical Physics and Spatial Statistics

Statistical Physics and Spatial Statistics

Author: Klaus R. Mecke

Publisher: Springer

Published: 2008-01-11

Total Pages: 420

ISBN-13: 3540450432

DOWNLOAD EBOOK

Modern physics is confronted with a large variety of complex spatial patterns. Although both spatial statisticians and statistical physicists study random geometrical structures, there has been only little interaction between the two up to now because of different traditions and languages. This volume aims to change this situation by presenting in a clear way fundamental concepts of spatial statistics which are of great potential value for condensed matter physics and materials sciences in general, and for porous media, percolation and Gibbs processes in particular. Geometric aspects, in particular ideas of stochastic and integral geometry, play a central role throughout. With nonspecialist researchers and graduate students also in mind, prominent physicists give an excellent introduction here to modern ideas of statistical physics pertinent to this exciting field of research.