Problems And Solutions For Groups, Lie Groups, Lie Algebras With Applications

Problems And Solutions For Groups, Lie Groups, Lie Algebras With Applications

Author: Willi-hans Steeb

Publisher: World Scientific Publishing Company

Published: 2012-04-26

Total Pages: 353

ISBN-13: 9813104112

DOWNLOAD EBOOK

The book presents examples of important techniques and theorems for Groups, Lie groups and Lie algebras. This allows the reader to gain understandings and insights through practice. Applications of these topics in physics and engineering are also provided. The book is self-contained. Each chapter gives an introduction to the topic.


Applications of Lie Groups to Differential Equations

Applications of Lie Groups to Differential Equations

Author: Peter J. Olver

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 524

ISBN-13: 1468402749

DOWNLOAD EBOOK

This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.


Lie Groups, Physics, and Geometry

Lie Groups, Physics, and Geometry

Author: Robert Gilmore

Publisher: Cambridge University Press

Published: 2008-01-17

Total Pages: 5

ISBN-13: 113946907X

DOWNLOAD EBOOK

Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.


An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras

Author: Alexander A. Kirillov

Publisher: Cambridge University Press

Published: 2008-07-31

Total Pages: 237

ISBN-13: 0521889693

DOWNLOAD EBOOK

This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.


Symmetry Methods for Differential Equations

Symmetry Methods for Differential Equations

Author: Peter Ellsworth Hydon

Publisher: Cambridge University Press

Published: 2000-01-28

Total Pages: 230

ISBN-13: 9780521497862

DOWNLOAD EBOOK

This book is a straightforward introduction to the subject of symmetry methods for solving differential equations, and is aimed at applied mathematicians, physicists, and engineers. The presentation is informal, using many worked examples to illustrate the main symmetry methods. It is written at a level suitable for postgraduates and advanced undergraduates, and is designed to enable the reader to master the main techniques quickly and easily.The book contains some methods that have not previously appeared in a text. These include methods for obtaining discrete symmetries and integrating factors.


Lie Groups, Lie Algebras, and Some of Their Applications

Lie Groups, Lie Algebras, and Some of Their Applications

Author: Robert Gilmore

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 610

ISBN-13: 0486131564

DOWNLOAD EBOOK

This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.


A Course in Group Theory

A Course in Group Theory

Author: J. F. Humphreys

Publisher: Oxford University Press, USA

Published: 1996

Total Pages: 296

ISBN-13: 9780198534594

DOWNLOAD EBOOK

Each chapter ends with a summary of the material covered and notes on the history and development of group theory.


Introduction to Lie Algebras

Introduction to Lie Algebras

Author: K. Erdmann

Publisher: Springer Science & Business Media

Published: 2006-09-28

Total Pages: 254

ISBN-13: 1846284902

DOWNLOAD EBOOK

Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.